Background: Determining the postmortem interval (PMI) accurately remains a significant challenge in forensic sciences, especially for intervals greater than 5 years (late PMI). Traditional methods often fail due to the extensive degradation of soft tissues, necessitating reliance on bone material examinations. The precision in estimating PMIs diminishes with time, particularly for intervals between 1 and 5 years, dropping to about 50% accuracy.
View Article and Find Full Text PDFis a lepidopteran whose larval stage has shown the ability to degrade polystyrene (PS), one of the most recalcitrant plastics to biodegradation. In the present study, we fed larvae with PS for 54 days and determined candidate enzymes for its degradation. We first confirmed the biodegradation of PS by Fourier transform infrared spectroscopy- Attenuated total reflectance (FTIR-ATR) and then identified candidate enzymes in the larval gut by proteomic analysis using liquid chromatography with tandem mass spectrometry (LC-MS/MS).
View Article and Find Full Text PDFBackground: The advancement of hybrid sequencing technologies is increasingly expanding genome assemblies that are often annotated using hybrid sequencing transcriptomics, leading to improved genome characterization and the identification of novel genes and isoforms in a wide variety of organisms.
Results: We developed an easy-to-use genome-guided transcriptome annotation pipeline that uses assembled transcripts from hybrid sequencing data as input and distinguishes between coding and long non-coding RNAs by integration of several bioinformatic approaches, including gene reconciliation with previous annotations in GTF format. We demonstrated the efficiency of this approach by correctly assembling and annotating all exons from the chicken SCO-spondin gene (containing more than 105 exons), including the identification of missing genes in the chicken reference annotations by homology assignments.
Arginase catalyzes the hydrolysis of L-arginine into L-ornithine and urea. This enzyme has several analogies with agmatinase, which catalyzes the hydrolysis of agmatine into putrescine and urea. However, this contrasts with the highlighted specificity that each one presents for their respective substrate.
View Article and Find Full Text PDF: Glucokinase Regulatory Protein (GKRP) is the only known endogenous modulator of glucokinase (GK) localization and activity to date, and both proteins are localized in tanycytes, radial glia-like cells involved in metabolic and endocrine functions in the hypothalamus. However, the role of tanycytic GKRP and its impact on the regulation of feeding behavior has not been investigated. Here, we hypothesize that GKRP regulates feeding behavior by modulating tanycyte-neuron metabolic communication in the arcuate nucleus.
View Article and Find Full Text PDFRestoring damaged β-cells in diabetic patients by harnessing the plasticity of other pancreatic cells raises the questions of the efficiency of the process and of the functionality of the new -expressing cells. To overcome the weak regenerative capacity of mammals, we used regeneration-prone zebrafish to study β-cells arising following destruction. We show that most new s cells differ from the original β-cells as they coexpress Somatostatin and Insulin.
View Article and Find Full Text PDFBackground: Endocrine cells of the zebrafish digestive system play an important role in regulating metabolism and include pancreatic endocrine cells (PECs) clustered in the islets of Langerhans and the enteroendocrine cells (EECs) scattered in the intestinal epithelium. Despite EECs and PECs are being located in distinct organs, their differentiation involves shared molecular mechanisms and transcription factors. However, their degree of relatedness remains unexplored.
View Article and Find Full Text PDFAgmatine is a neurotransmitter with anticonvulsant, anti-neurotoxic and antidepressant-like effects, in addition it has hypoglycemic actions. Agmatine is converted to putrescine and urea by agmatinase (AGM) and by an agmatinase-like protein (ALP), a new type of enzyme which is present in human and rodent brain tissues. Recombinant rat brain ALP is the only mammalian protein that exhibits significant agmatinase activity in vitro and generates putrescine under in vivo conditions.
View Article and Find Full Text PDFVariations in transcription start site (TSS) selection reflect diversity of preinitiation complexes and can impact on post-transcriptional RNA fates. Most metazoan polymerase II-transcribed genes carry canonical initiation with pyrimidine/purine (YR) dinucleotide, while translation machinery-associated genes carry polypyrimidine initiator (5'-TOP or TCT). By addressing the developmental regulation of TSS selection in zebrafish we uncovered a class of dual-initiation promoters in thousands of genes, including snoRNA host genes.
View Article and Find Full Text PDFUreohydrolases form a conserved family of enzymes with a strict requirement for divalent metal ions for catalytic activity. They catalyze the hydrolysis of the guanidino group and produce urea. In their active sites six highly conserved amino acid residues form a binding pocket for two catalytically essential metal ions that are needed to activate a water molecule to initiate the hydrolysis of the guanidino group in a nucleophilic attack.
View Article and Find Full Text PDFGlucose homeostasis is performed by specialized cells types that detect and respond to changes in systemic glucose concentration. Hepatocytes, β-cells and hypothalamic tanycytes are part of the glucosensor cell types, which express several proteins involved in the glucose sensing mechanism such as GLUT2, Glucokinase (GK) and Glucokinase regulatory protein (GKRP). GK catalyzes the phosphorylation of glucose to glucose-6-phosphate (G-6P), and its activity and subcellular localization are regulated by GKRP.
View Article and Find Full Text PDFTanycytes are hypothalamic radial glia-like cells that form the basal wall of the third ventricle (3V) where they sense glucose and modulate neighboring neuronal activity to control feeding behavior. This role requires the coupling of hypothalamic cells since transient decreased hypothalamic Cx43 expression inhibits the increase of brain glucose-induced insulin secretion. Tanycytes have been postulated as possible hypothalamic neuronal precursors due to their privileged position in the hypothalamus that allows them to detect mitogenic signals and because they share the markers and characteristics of neuronal precursors located in other neurogenic niches, including the formation of coupled networks through connexins.
View Article and Find Full Text PDFIron is a trace element, essential to support life due to its inherent ability to exchange electrons with a variety of molecules. The use of iron as a cofactor in basic metabolic pathways is essential to both pathogenic microorganisms and their hosts. During evolution, the shared requirement of micro- and macro-organisms for this important nutrient has shaped the pathogen-host relationship.
View Article and Find Full Text PDFType 2 diabetes (T2D) is a disease characterized by impaired insulin secretion. The Wnt signaling transcription factor Tcf7l2 is to date the T2D-associated gene with the largest effect on disease susceptibility. However, the mechanisms by which TCF7L2 variants affect insulin release from β-cells are not yet fully understood.
View Article and Find Full Text PDFThe tear film protects the terrestrial animal's ocular surface and the lacrimal gland provides important aqueous secretions necessary for its maintenance. Despite the importance of the lacrimal gland in ocular health, molecular aspects of its development remain poorly understood. We have identified a noncoding RNA (miR-205) as an important gene for lacrimal gland development.
View Article and Find Full Text PDFBackground: Defining the transcriptome and the genetic pathways of pancreatic cells is of great interest for elucidating the molecular attributes of pancreas disorders such as diabetes and cancer. As the function of the different pancreatic cell types has been maintained during vertebrate evolution, the comparison of their transcriptomes across distant vertebrate species is a means to pinpoint genes under strong evolutionary constraints due to their crucial function, which have therefore preserved their selective expression in these pancreatic cell types.
Results: In this study, RNA-sequencing was performed on pancreatic alpha, beta, and delta endocrine cells as well as the acinar and ductal exocrine cells isolated from adult zebrafish transgenic lines.
Background: In contrast to mammals, the zebrafish has the remarkable capacity to regenerate its pancreatic beta cells very efficiently. Understanding the mechanisms of regeneration in the zebrafish and the differences with mammals will be fundamental to discovering molecules able to stimulate the regeneration process in mammals. To identify the pancreatic cells able to give rise to new beta cells in the zebrafish, we generated new transgenic lines allowing the tracing of multipotent pancreatic progenitors and endocrine precursors.
View Article and Find Full Text PDFGlucokinase (GK), the hexokinase involved in glucose sensing in pancreatic β cells, is also expressed in hypothalamic tanycytes, which cover the ventricular walls of the basal hypothalamus and are implicated in an indirect control of neuronal activity by glucose. Previously, we demonstrated that GK was preferentially localized in tanycyte nuclei in euglycemic rats, which has been reported in hepatocytes and is suggestive of the presence of the GK regulatory protein, GKRP. In the present study, GK intracellular localization in hypothalamic and hepatic tissues of the same rats under several glycemic conditions was compared using confocal microscopy and Western blot analysis.
View Article and Find Full Text PDF