Wastewater treatment plant (WWTP) influent sampling is commonly used in wastewater-based disease surveillance to assess the circulation of pathogens in the population aggregated in a catchment area. However, the signal can be lost within the sewer network due to adsorption, degradation, and dilution processes. The present work aimed to investigate the dynamics of SARS-CoV-2 concentration in three sub-catchments of the sewer system in the city of Hildesheim, Germany, characterised by different levels of urbanisation and presence/absence of industry, and to evaluate the benefit of sub-catchment sampling compared to WWTP influent sampling.
View Article and Find Full Text PDFRooftop rainwater harvesting systems and blue-green infrastructure are becoming important resilience alternatives for urban climate adaptation. This study sheds light on the largely unreported physicochemical and microbiological quality of private roof-harvested rainwater (RHRW). We aimed to identify the physicochemical and microbiological characteristics of RHRW, explore potential correlations between them and assess probable health risks associated with recreational interactions of children with the water.
View Article and Find Full Text PDFOrnamental fountains are attractive urban infrastructures helping cities to cope with global warming, as water sprays have great cooling effects due to evaporative properties; however, exposure to microbiologically impaired water from ornamental fountains during recreational activities may result in adverse health outcomes for the exposed population. This study assesses the microbial water quality of four ornamental water fountains (Blätterbrunnen, Körtingbrunnen, Klaus-Bahlsen-Brunnen, and Marstallbrunnen) and performs a quantitative microbial risk assessment (QMRA) for children using Escherichia coli, Enterococci, and Salmonella to quantify the probability of gastrointestinal illnesses and Pseudomonas aeruginosa to quantify the risk of dermal infections. Samples were collected fortnightly in two campaigns in 2020 and 2021 and processed to determine bacterial concentrations.
View Article and Find Full Text PDF