Enduring behavioral changes upon stress exposure involve changes in gene expression sustained by epigenetic modifications in brain circuits, including the mesocorticolimbic pathway. Brahma (BRM) and Brahma Related Gene 1 (BRG1) are ATPase subunits of the SWI/SNF complexes involved in chromatin remodeling, a process essential to enduring plastic changes in gene expression. Here, we show that in mice, social defeat induces changes in BRG1 nuclear distribution.
View Article and Find Full Text PDFAddictive drugs increase dopamine in the nucleus accumbens (NAc), where it persistently shapes excitatory glutamate transmission and hijacks natural reward processing. Here, we provide evidence, from mice to humans, that an underlying mechanism relies on drug-evoked heteromerization of glutamate -methyl-d-aspartate receptors (NMDAR) with dopamine receptor 1 (D1R) or 2 (D2R). Using temporally controlled inhibition of D1R-NMDAR heteromerization, we unraveled their selective implication in early phases of cocaine-mediated synaptic, morphological, and behavioral responses.
View Article and Find Full Text PDFWe show here that the transcription factor Npas4 is an important regulator of medium spiny neuron spine density and electrophysiological parameters and that it determines the magnitude of cocaine-induced hyperlocomotion in mice. Npas4 is induced by synaptic stimuli that cause calcium influx, but not dopaminergic or PKA-stimulating input, in mouse medium spiny neurons and human iPSC-derived forebrain organoids. This induction is independent of ubiquitous kinase pathways such as PKA and MAPK cascades, and instead depends on calcineurin and nuclear calcium signalling.
View Article and Find Full Text PDFDrug addiction is a chronic and relapsing disorder that leads to compulsive drug intake despite deleterious consequences. By increasing dopamine (DA) in the mesolimbic system, drugs of abuse hijack the brain reward circuitry, which is critical for the development of enduring behavioral alterations. DA mainly acts onto DA D1 (D1R) and D2 (D2R) receptor subtypes, which are positively and negatively coupled to adenylyl cyclase, respectively.
View Article and Find Full Text PDFBackground: Addiction relies on persistent alterations of neuronal properties, which depends on gene regulation. Activity-regulated cytoskeleton-associated protein (Arc) is an immediate early gene that modulates neuronal plasticity underlying learning and memory. Its role in cocaine-induced neuronal and behavioral adaptations remains elusive.
View Article and Find Full Text PDF