Publications by authors named "Esteban Serra"

Chagas disease, caused by the protozoan parasite , affects millions globally, with increasing urban cases outside of Latin America. Treatment is based on two compounds, namely, benznidazole (BZ) and nifurtimox, but chronic cases pose several challenges. Targeting lysine acetylation, particularly bromodomain-containing proteins, shows promise as a novel antiparasitic target.

View Article and Find Full Text PDF
Article Synopsis
  • Trypanosoma cruzi, the agent responsible for Chagas disease, exhibits unique biological traits and responds to DNA damage through a specific repair pathway called transcription-coupled nucleotide excision repair (TC-NER).
  • When UV light induces DNA lesions, unresolved transcriptional stress can lead to a programmed cell death mechanism that resembles apoptosis.
  • The study reveals that the Cockayne Syndrome B protein (CSB) plays a crucial role in this process, as its overexpression increases cell death after UV exposure, while its absence confers resistance, suggesting an ATR-dependent apoptosis-like signaling in T. cruzi.
View Article and Find Full Text PDF

Bromodomains are structural folds present in all eukaryotic cells that bind to other proteins recognizing acetylated lysines. Most proteins with bromodomains are part of nuclear complexes that interact with acetylated histone residues and regulate DNA replication, transcription, and repair through chromatin structure remodeling. Bromodomain inhibitors are small molecules that bind to the hydrophobic pocket of bromodomains, interfering with the interaction with acetylated histones.

View Article and Find Full Text PDF

Acetylation signaling pathways in trypanosomatids, a group of early branching organisms, are poorly understood due to highly divergent protein sequences. To overcome this challenge, we used interactomic datasets and AlphaFold2 (AF2)-multimer to predict direct interactions and validated them using yeast two and three-hybrid assays. We focused on MORF4 related gene (MRG) domain-containing proteins and their interactions, typically found in histone acetyltransferase/deacetylase complexes.

View Article and Find Full Text PDF

is a unicellular parasite that causes Chagas disease, which is endemic in the American continent but also worldwide, distributed by migratory movements. A striking feature of trypanosomatids is the polycistronic transcription associated with post-transcriptional mechanisms that regulate the levels of translatable mRNA. In this context, epigenetic regulatory mechanisms have been revealed to be of great importance, since they are the only ones that would control the access of RNA polymerases to chromatin.

View Article and Find Full Text PDF

The number of acetylated proteins identified from bacteria to mammals has grown exponentially in the last ten years, and it is now accepted that acetylation is a key component in most eukaryotic signaling pathways and is as important as phosphorylation. The enzymes involved in this process are well described in mammals; acetyltransferases and deacetylases are found inside and outside the nuclear compartment and have different regulatory functions. In trypanosomatids, several of these enzymes have been described and are postulated to be novel antiparasitic targets for the rational design of drugs.

View Article and Find Full Text PDF

Trypanosoma cruzi is the causative agent of Chagas disease (ChD), an endemic disease of public health importance in Latin America that also affects many non-endemic countries due to the increase in migration. This disease affects nearly 8 million people, with new cases estimated at 50,000 per year. In the 1960s and 70s, two drugs for ChD treatment were introduced: nifurtimox and benznidazole (BZN).

View Article and Find Full Text PDF

Trypanosomatids have a cytoskeleton arrangement that is simpler than what is found in most eukaryotic cells. However, it is precisely organized and constituted by stable microtubules. Such microtubules compose the mitotic spindle during mitosis, the basal body, the flagellar axoneme and the subpellicular microtubules, which are connected to each other and also to the plasma membrane forming a helical arrangement along the central axis of the parasite cell body.

View Article and Find Full Text PDF

Kinetoplastid parasites, included Trypanosoma cruzi, the causal agent of Chagas disease, present a unique genome organization and gene expression. Although they control gene expression mainly post-transcriptionally, chromatin accessibility plays a fundamental role in transcription initiation control. We have previously shown that High Mobility Group B protein from Trypanosoma cruzi (TcHMGB) can bind DNA in vitro.

View Article and Find Full Text PDF

Bromodomains recognize and bind acetyl-lysine residues present in histone and non-histone proteins in a specific manner. In the last decade they have raised as attractive targets for drug discovery because the miss-regulation of human bromodomains was discovered to be involved in the development of a large spectrum of diseases. However, targeting eukaryotic pathogens bromodomains continues to be almost unexplored.

View Article and Find Full Text PDF

Target-directed dynamic combinatorial chemistry (DCC) has emerged as a strategy for the identification of inhibitors of relevant therapeutic targets. In this contribution, we use this strategy for the identification of a high-affinity binder of a parasite target, the bromodomain-containing protein BDF3. This protein is essential for viability of , the protozoan parasite that causes Chagas disease.

View Article and Find Full Text PDF

A set of chemically engineered extracts enriched in compounds including N-N and N-O fragments in their structures was prepared. Bromodomain binding screening and bioguided fractionation led to the identification of one oxime hit that interacts with TcBDF3 with affinity in the submicromolar range and that shows interesting antiparasitic properties against the different life cycle stages of T. cruzi.

View Article and Find Full Text PDF

A series of prenyl 1,2,3-triazoles were prepared from isoprenyl azides and different alkynes. The dipolar cycloaddition reaction provided exclusively primary azide products as regioisomeric mixtures that were separated by column chromatography and fully characterized. Most of the compounds displayed antiparasitic activity against and .

View Article and Find Full Text PDF

Objectives: To develop an alcohol-free solution suitable for children of benznidazole, the drug of choice for treatment of Chagas disease.

Methods: In a quality-by-design approach, a systematic optimisation procedure was carried out to estimate the values of the factors leading to the maximum drug concentration. The formulations were analysed in terms of chemical and physical stability and drug content.

View Article and Find Full Text PDF

The bromodomain is the only protein domain known to bind acetylated lysine. In the last few years many bromodomain inhibitors have been developed in order to treat diseases such as cancer caused by aberrant acetylation of lysine residues. We have previously characterized Trypanosoma cruzi bromodomain factor 3 (TcBDF3), a bromodomain with an atypical localization that binds acetylated α-tubulin.

View Article and Find Full Text PDF

Acetylation is a ubiquitous protein modification present in prokaryotic and eukaryotic cells that participates in the regulation of many cellular processes. The bromodomain is the only domain known to bind acetylated lysine residues. In the last few years, many bromodomain inhibitors have been developed in order to treat diseases caused by aberrant acetylation of lysine residues and have been tested as anti-parasitic drugs.

View Article and Find Full Text PDF

Background: Trypanosoma cruzi is a protozoan pathogen responsible for Chagas disease. Current therapies are inadequate because of their severe host toxicity and numerous side effects. The identification of new biotargets is essential for the development of more efficient therapeutic alternatives.

View Article and Find Full Text PDF

We present here three expression plasmids for Trypanosoma cruzi adapted to the Gateway® recombination cloning system. Two of these plasmids were designed to express trypanosomal proteins fused to a double tag for tandem affinity purification (TAPtag). The TAPtag and Gateway® cassette were introduced into an episomal (pTEX) and an integrative (pTREX) plasmid.

View Article and Find Full Text PDF

Bromodomains are highly conserved acetyl-lysine binding domains found mainly in proteins associated with chromatin and nuclear acetyltransferases. The Trypanosoma cruzi genome encodes at least four bromodomain factors (TcBDFs). We describe here bromodomain factor 3 (TcBDF3), a bromodomain-containing protein localized in the cytoplasm.

View Article and Find Full Text PDF

In the past ten years the number of acetylated proteins reported in literature grew exponentially. Several authors have proposed that acetylation might be a key component in most eukaryotic signaling pathways, as important as phosphorylation. The enzymes involved in this process are starting to emerge; acetyltransferases and deacetylases are found inside and outside the nuclear compartment and have different regulatory functions.

View Article and Find Full Text PDF

Chagas' disease is caused by the protozoan parasite Trypanosoma cruzi. About 8 million people throughout Latin America are infected causing approximately 10,000 deaths annually. Benznidazole, available as unique 100 mg tablets in many of the endemic countries, is currently the drug of choice for the specific treatment of this condition.

View Article and Find Full Text PDF

High mobility group B (HMGB) proteins are highly abundant non-histone chromatin proteins that play important roles in the execution and control of many nuclear functions. Based on homology searches, we identified the coding sequence for the TcHMGB protein, an HMGB family member from Trypanosoma cruzi. TcHMGB has two HMG box domains, similar to mammalian HMGBs, but lacks the typical C-terminal acidic tail.

View Article and Find Full Text PDF

Recent studies have shown that Benznidazole (BZL), known for its antiparasitic action on Trypanosoma cruzi, modulates pro-inflammatory cytokines and nitric oxide (NO) release in activated macrophages by blocking NF-κB through inhibition of IKK in vitro. As so far, little is known about the mechanism by which BZL provokes the inhibition of inflammatory response in sepsis in vivo, we aimed to delineate the possible role of BZL as a modulator in liver inflammation in mice with sepsis induced by cecal ligation and puncture (CLP). Specifically, we analyzed leukocytes, liver production of TNF-α and NO and the intracellular pathways modulated by these mediators, including NF-κB and MAPKs, in the liver of mice 24 h post-CLP.

View Article and Find Full Text PDF

Over the last years an expanding family of small non-coding RNAs (sRNA) has been identified in eukaryotic genomes which behave as sequence-specific triggers for mRNA degradation, translation repression, heterochromatin formation and genome stability. To achieve their effectors functions, sRNAs associate with members of the Argonaute protein family. Argonaute proteins are segregated into three paralogous groups: the AGO-like subfamily, the PIWI-like subfamily, and the WAGO subfamily (for Worm specific AGO).

View Article and Find Full Text PDF

Previously, we demonstrated that benznidazole (BZL), known for its antiparasitic action on Trypanosoma cruzi, modulates pro-inflammatory cytokines and NO release in macrophages by inhibiting NF-kappaB. We now proceeded to elucidate the molecular mechanisms by which BZL exerts its inhibitory action on NF-kappaB. We demonstrated that the inhibitory effect of BZL is not extended to other macrophage responses, since it did not inhibit other typical hallmarks of macrophage activation such as phagocytosis, MHC-II molecules expression or production of reactive oxygen species (ROS) by NADPH oxidase.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionhcdtohqcer0uu3vhks6rs14cprdlcj8o): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once