Disruptions, such as closures of businesses during pandemics, not only affect businesses and amenities directly but also influence how people move, spreading the impact to other businesses and increasing the overall economic shock. However, it is unclear how much businesses depend on each other during disruptions. Leveraging human mobility data and same-day visits in five US cities, we quantify dependencies between points of interest encompassing businesses, stores and amenities.
View Article and Find Full Text PDFBackground: During the COVID-19 pandemic, changes were seen in city mobility patterns around the world, including in active transportation (walking, cycling, micromobility, and public transit use), creating a unique opportunity for global public health lessons and action. We aimed to analyse a global natural experiment exploring city mobility patterns during the pandemic and how they related to the implementation of COVID-19-related policies.
Methods: We obtained data from Apple's Mobility Trends Reports on city mobility indexes for 296 cities from Jan 13, 2020 to Feb 4, 2022.
Modeling and predicting human mobility trajectories in urban areas is an essential task for various applications including transportation modeling, disaster management, and urban planning. The recent availability of large-scale human movement data collected from mobile devices has enabled the development of complex human mobility prediction models. However, human mobility prediction methods are often trained and tested on different datasets, due to the lack of open-source large-scale human mobility datasets amid privacy concerns, posing a challenge towards conducting transparent performance comparisons between methods.
View Article and Find Full Text PDFPoor diets are a leading cause of morbidity and mortality. Exposure to low-quality food environments saturated with fast food outlets is hypothesized to negatively impact diet. However, food environment research has predominantly focused on static food environments around home neighborhoods and generated mixed findings.
View Article and Find Full Text PDFNon-pharmaceutical measures such as preventive quarantines, remote working, school and workplace closures, lockdowns, etc. have shown effectiveness from an epidemic control perspective; however, they have also significant negative consequences on social life and relationships, work routines and community engagement. In particular, complex ideas, work and school collaborations, innovative discoveries and resilient norms formation and maintenance, which often require face-to-face interactions of two or more parties to be developed and synergically coordinated, are particularly affected.
View Article and Find Full Text PDFThe characteristics of food environments people are exposed to, such as the density of fast food (FF) outlets, can impact their diet and risk for diet-related chronic disease. Previous studies examining the relationship between food environments and nutritional health have produced mixed findings, potentially due to the predominant focus on static food environments around people's homes. As smartphone ownership increases, large-scale data on human mobility (i.
View Article and Find Full Text PDFThe analysis of pedestrian GPS datasets is fundamental to further advance on the study and the design of walkable cities. The highest resolution GPS data can characterize micro-mobility patterns and pedestrians' micro-motives in relation to a small-scale urban context. Purposed-based recurrent mobility data inside people's neighbourhoods is an important source in these sorts of studies.
View Article and Find Full Text PDFUnlabelled: Urbanization and its problems require an in-depth and comprehensive understanding of urban dynamics, especially the complex and diversified lifestyles in modern cities. Digitally acquired data can accurately capture complex human activity, but it lacks the interpretability of demographic data. In this paper, we study a privacy-enhanced dataset of the mobility visitation patterns of 1.
View Article and Find Full Text PDFDiversity of physical encounters in urban environments is known to spur economic productivity while also fostering social capital. However, mobility restrictions during the pandemic have forced people to reduce urban encounters, raising questions about the social implications of behavioral changes. In this paper, we study how individual income diversity of urban encounters changed during the pandemic, using a large-scale, privacy-enhanced mobility dataset of more than one million anonymized mobile phone users in Boston, Dallas, Los Angeles, and Seattle, across three years spanning before and during the pandemic.
View Article and Find Full Text PDFUrban density, in the form of residents' and visitors' concentration, is long considered to foster diverse exchanges of interpersonal knowledge and skills, which are intrinsic to sustainable human settlements. However, with current urban studies primarily devoted to city- and district-level analyses, we cannot unveil the elemental connection between urban density and diversity. Here we use an anonymized and privacy-enhanced mobile dataset of 0.
View Article and Find Full Text PDFAs the living tissue connecting urban places, streets play significant roles in driving city development, providing essential access, and promoting human interactions. Understanding street activities and how these activities vary across different streets is critical for designing both efficient and livable streets. However, current street classification frameworks primarily focus on either streets' functions in transportation networks or their adjacent land uses rather than actual activity patterns, resulting in coarse classifications.
View Article and Find Full Text PDFDetailed characterization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission across different settings can help design less disruptive interventions. We used real-time, privacy-enhanced mobility data in the New York City, NY and Seattle, WA metropolitan areas to build a detailed agent-based model of SARS-CoV-2 infection to estimate the where, when, and magnitude of transmission events during the pandemic's first wave. We estimate that only 18% of individuals produce most infections (80%), with about 10% of events that can be considered superspreading events (SSEs).
View Article and Find Full Text PDFJ R Soc Interface
December 2021
Reliable and timely information on socio-economic status and divides is critical to social and economic research and policing. Novel data sources from mobile communication platforms have enabled new cost-effective approaches and models to investigate social disparity, but their lack of interpretability, accuracy or scale has limited their relevance to date. We investigate the divide in digital mobile service usage with a large dataset of 3.
View Article and Find Full Text PDFTraditional understanding of urban income segregation is largely based on static coarse-grained residential patterns. However, these do not capture the income segregation experience implied by the rich social interactions that happen in places that may relate to individual choices, opportunities, and mobility behavior. Using a large-scale high-resolution mobility data set of 4.
View Article and Find Full Text PDFA critical question relevant to the increasing importance of crowd-sourced-based finance is how to optimize collective information processing and decision-making. Here, we investigate an often under-studied aspect of the performance of online traders: beyond focusing on just accuracy, what gives rise to the trade-off between risk and accuracy at the collective level? Answers to this question will lead to designing and deploying more effective crowd-sourced financial platforms and to minimizing issues stemming from risk such as implied volatility. To investigate this trade-off, we conducted a large online Wisdom of the Crowd study where 2037 participants predicted the prices of real financial assets (S&P 500, WTI Oil and Gold prices).
View Article and Find Full Text PDFIn the United States (US), low-income workers are being pushed away from city centers where the cost of living is high. The effects of such changes on labor mobility and housing price have been explored in the literature. However, few studies have focused on the occupations and specific skills that identify the most susceptible workers.
View Article and Find Full Text PDFThe COVID-19 pandemic is causing mass disruption to our daily lives. We integrate mobility data from mobile devices and area-level data to study the walking patterns of 1.62 million anonymous users in 10 metropolitan areas in the United States.
View Article and Find Full Text PDFCities are the innovation centers of the US economy, but technological disruptions can exclude workers and inhibit a middle class. Therefore, urban policy must promote the jobs and skills that increase worker pay, create employment, and foster economic resilience. In this paper, we model labor market resilience with an ecologically-inspired job network constructed from the similarity of occupations' skill requirements.
View Article and Find Full Text PDFWhile severe social-distancing measures have proven effective in slowing the coronavirus disease 2019 (COVID-19) pandemic, second-wave scenarios are likely to emerge as restrictions are lifted. Here we integrate anonymized, geolocalized mobility data with census and demographic data to build a detailed agent-based model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission in the Boston metropolitan area. We find that a period of strict social distancing followed by a robust level of testing, contact-tracing and household quarantine could keep the disease within the capacity of the healthcare system while enabling the reopening of economic activities.
View Article and Find Full Text PDFThe new coronavirus disease 2019 (COVID-19) has required the implementation of severe mobility restrictions and social distancing measures worldwide. While these measures have been proven effective in abating the epidemic in several countries, it is important to estimate the effectiveness of testing and tracing strategies to avoid a potential second wave of the COVID-19 epidemic. We integrate highly detailed (anonymized, privacy-enhanced) mobility data from mobile devices, with census and demographic data to build a detailed agent-based model to describe the transmission dynamics of SARS-CoV-2 in the Boston metropolitan area.
View Article and Find Full Text PDFOur private connections can be exposed by link prediction algorithms. To date, this threat has only been addressed from the perspective of a central authority, completely neglecting the possibility that members of the social network can themselves mitigate such threats. We fill this gap by studying how an individual can rewire her own network neighborhood to hide her sensitive relationships.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2019
Rapid advances in artificial intelligence (AI) and automation technologies have the potential to significantly disrupt labor markets. While AI and automation can augment the productivity of some workers, they can replace the work done by others and will likely transform almost all occupations at least to some degree. Rising automation is happening in a period of growing economic inequality, raising fears of mass technological unemployment and a renewed call for policy efforts to address the consequences of technological change.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2018
Online social media are information resources that can have a transformative power in society. While the Web was envisioned as an equalizing force that allows everyone to access information, the digital divide prevents large amounts of people from being present online. Online social media, in particular, are prone to gender inequality, an important issue given the link between social media use and employment.
View Article and Find Full Text PDF