Neoplasia
August 2021
The adverse environmental conditions found in the periodontium during periodontitis pathogenesis stimulate local autophagy responses, mainly due to a continuous inflammatory response against the dysbiotic subgingival microbiome. The junctional epithelium represents the main site of the initial interaction between the host and the dysbiotic biofilm. Here, we investigated the role of autophagy in junctional epithelium keratinocytes (JEKs) in response to or its purified lipopolysaccharides (LPS).
View Article and Find Full Text PDFTrypanosoma cruzi, the causative agent of Chagas disease, has a dense coat of GPI-anchored virulence factors. T. cruzi GPI-anchored adhesin GP82 is encoded by a repertoire of transcripts containing several in-frame initiation codons located up-stream from that adjacent to the predicted signal peptide (SP).
View Article and Find Full Text PDFis the etiologic agent of Chagas' disease. It is known that amastigotes derived from trypomastigotes in the extracellular milieu are infective and . Extracellular amastigotes (EAs) have a stage-specific surface antigen called Ssp-4, a GPI-anchored glycoprotein that is secreted by the parasites.
View Article and Find Full Text PDFThe protozoan parasite is the causative agent of Chagas' disease. In mammalian hosts, alternates between trypomastigote and amastigote forms. Additionally, trypomastigotes can differentiate into amastigotes in the extracellular environment generating infective extracellular amastigotes (EAs).
View Article and Find Full Text PDFMevalonate kinase (MVK) is an essential enzyme acting in early steps of sterol isoprenoids biosynthesis, such as cholesterol in humans or ergosterol in trypanosomatids. MVK is conserved from bacteria to mammals, and localizes to glycosomes in trypanosomatids. During the course of T.
View Article and Find Full Text PDFAlthough imaging the live Trypanosoma cruzi parasite is a routine technique in most laboratories, identification of the parasite in infected tissues and organs has been hindered by their intrinsic opaque nature. We describe a simple method for in vivo observation of live single-cell Trypanosoma cruzi parasites inside mammalian host tissues. BALB/c or C57BL/6 mice infected with DsRed-CL or GFP-G trypomastigotes had their organs removed and sectioned with surgical blades.
View Article and Find Full Text PDFBackground: The surface coat of Trypanosoma cruzi is predominantly composed of glycosylphosphatidylinositol-anchored proteins, which have been extensively characterized. However, very little is known about less abundant surface proteins and their role in host-parasite interactions.
Methodology/ Principal Findings: Here, we described a novel family of T.
Infect Genet Evol
July 2014
Chagas disease is caused by the protozoan Trypanosoma cruzi which affects 10 million people worldwide. Very few kinases have been characterized in this parasite, including the phosphatidylinositol kinases (PIKs) that are at the heart of one of the major pathways of intracellular signal transduction. Recently, we have classified the PIK family in T.
View Article and Find Full Text PDFParasitological cure for Chagas disease is considered extremely difficult to achieve because of the lack of effective chemotherapeutic agents against Trypanosoma cruzi at different stages of infection. There are currently only two drugs available. These have several limitations and can produce serious side effects.
View Article and Find Full Text PDFT. cruzi improves the likelihood of invading or adapting to the host through its capacity to present a large repertoire of surface molecules. The metacyclic stage-specific surface glycoprotein GP82 has been implicated in host cell invasion.
View Article and Find Full Text PDFMicroorganisms use specialized systems to export virulence factors into host cells. Secretion of effector proteins into the extracellular environment has been described in Trypanosoma cruzi; however, a comprehensive proteomic analysis of the secretome and the secretion mechanisms involved remain elusive. Here, we present evidence that T.
View Article and Find Full Text PDFActa Trop
September 2012
Gene expression in Trypanosoma cruzi is regulated at the post-transcriptional level and cis-acting elements present in the 3' untranslated region (3'UTR) play an important role by interacting with regulatory proteins. Previous studies demonstrated that the GP82 surface glycoprotein, which is involved in host cell invasion, is up-regulated in the infective metacyclic trypomastigote form, and that GP82 mRNA half-life is longer in this form compared to the non-infective epimastigote form. Here, we demonstrate that the 3'UTR of the GP82 transcript is involved in this developmental regulation, promoting higher expression of the green fluorescent protein (GFP) reporter in metacyclic trypomastigotes than in epimastigotes.
View Article and Find Full Text PDFBackground: Trypanosoma cruzi has a single flagellum attached to the cell body by a network of specialized cytoskeletal and membranous connections called the flagellum attachment zone. Previously, we isolated a DNA fragment (clone H49) which encodes tandemly arranged repeats of 68 amino acids associated with a high molecular weight cytoskeletal protein. In the current study, the genomic complexity of H49 and its relationships to the T.
View Article and Find Full Text PDFBackground: The Trypanosoma cruzi genome was sequenced from a hybrid strain (CL Brener). However, high allelic variation and the repetitive nature of the genome have prevented the complete linear sequence of chromosomes being determined. Determining the full complement of chromosomes and establishing syntenic groups will be important in defining the structure of T.
View Article and Find Full Text PDFThe cell surface of Trypanosoma cruzi, the etiologic agent of Chagas disease, is covered by a dense layer of glycosylphosphatidylinositol (GPI)-anchored molecules. These molecules are involved in a variety of interactions between this parasite and its mammalian and insect hosts. Here, using the neutral detergent Triton X-114, we obtained fractions rich in GPI-anchored and other membrane proteins from insect developmental stages of T.
View Article and Find Full Text PDFTrypanosoma cruzi metacyclic trypomastigotes express the developmentally regulated GP82 glycoprotein, which is implicated in host cell invasion. Although GP82 mRNA and protein are not present and the mRNAs barely detectable in epimastigotes, nuclear run-on analysis showed that it is transcribed in both stages. This result indicates that accumulation of transcripts in metacyclic forms is not due to increased transcription of the GP82 gene.
View Article and Find Full Text PDFDuring Trypanosoma cruzi cell invasion, signal transduction pathways are triggered in parasite and host cells, leading to a rise in intracellular Ca2+ concentration. We posed the question whether calcineurin (CaN), in particular the functional regulatory subunit CaNB, a Ca2+-binding EF-hand protein, was expressed in T. cruzi and whether it played a role in cell invasion.
View Article and Find Full Text PDFTrypanosoma cruzi, the parasite causing Chagas' disease, relies on triatomines for its transmission. T. cruzi metacyclic trypomastigotes express GP82 and GP90, which are developmentally regulated surface proteins that have been implicated in host cell invasion.
View Article and Find Full Text PDFHere we provide evidence for a critical role of PP2As (protein phosphatase 2As) in the transformation of Trypanosoma cruzi. In axenic medium at pH 5.0, trypomastigotes rapidly transform into amastigotes, a process blocked by okadaic acid, a potent PP2A inhibitor, at concentrations as low as 0.
View Article and Find Full Text PDF