Publications by authors named "Esteban J Palomo"

Self-organizing maps (SOMs) are aimed to learn a representation of the input distribution which faithfully describes the topological relations among the clusters of the distribution. For some data sets and applications, it is known beforehand that some regions of the input space cannot contain any samples. Those are known as forbidden regions.

View Article and Find Full Text PDF

The growing neural gas (GNG) self-organizing neural network stands as one of the most successful examples of unsupervised learning of a graph of processing units. Despite its success, little attention has been devoted to its extension to a hierarchical model, unlike other models such as the self-organizing map, which has many hierarchical versions. Here, a hierarchical GNG is presented, which is designed to learn a tree of graphs.

View Article and Find Full Text PDF

In this work, a novel self-organizing model called growing neural forest (GNF) is presented. It is based on the growing neural gas (GNG), which learns a general graph with no special provisions for datasets with separated clusters. On the contrary, the proposed GNF learns a set of trees so that each tree represents a connected cluster of data.

View Article and Find Full Text PDF

Growing hierarchical self-organizing models are characterized by the flexibility of their structure, which can easily accommodate for complex input datasets. However, most proposals use the Euclidean distance as the only error measure. Here we propose a way to introduce Bregman divergences in these models, which is based on stochastic approximation principles, so that more general distortion measures can be employed.

View Article and Find Full Text PDF

Since the introduction of the growing hierarchical self-organizing map, much work has been done on self-organizing neural models with a dynamic structure. These models allow adjusting the layers of the model to the features of the input dataset. Here we propose a new self-organizing model which is based on a probabilistic mixture of multivariate Gaussian components.

View Article and Find Full Text PDF