Publications by authors named "Esteban F Duran-Lara"

Infections from multi-drug resistant bacteria (MDRB) have raised a worldwide concern, with projections indicating that fatalities from these infections could surpass those from cancer by 2050. This troubling trend is influenced by several factors, including the scarcity of new antibiotics to tackle challenging infections, the prohibitive costs of last-resort antibiotics, the inappropriate use of antimicrobial agents in agriculture and aquaculture, and the over-prescription of antibiotics in community settings. One promising alternative treatment is the application of antimicrobial peptides (AMPs) against MDRB.

View Article and Find Full Text PDF

Osteosarcoma is a highly aggressive tumor that originates in the bone and often infiltrates nearby bone cells. It is the most prevalent type of primary bone cancer among the various bone malignancies. Traditional cancer treatment methods such as surgery, chemotherapy, immunotherapy, and radiotherapy have had restricted success.

View Article and Find Full Text PDF

Hydrogels (HGs) are 3-D polymeric networks with high water content, making them appropriate for biomedical applications such as drug delivery systems. This study examines the impact of agarose in semi-interpenetrating polymer networks (Semi-IPNs) based on poly(acrylic acid) (p(AA)), N, N' Methylenebis(acrylamide) (MBA) and agarose (AGA) on the sustained release of Polymyxin B (PolB). Agarose incorporation improved the mechanical strength, swelling behavior and drug retention capacity of the HG.

View Article and Find Full Text PDF

The global increase in cancer incidence over the past decade highlights the urgent need for more effective therapeutic strategies. Conventional cancer treatments face challenges such as drug resistance and off-target toxicity, which affect healthy tissues. Chondroitin sulfate (CHDS), a naturally occurring bioactive macromolecule, has gained attention because of its biocompatibility, biodegradability, and low toxicity, positioning it as an ideal candidate for cancer-targeted drug delivery systems.

View Article and Find Full Text PDF

A crucial pathogenic mechanism in many bacterial diseases is the ability to create biofilms. Biofilms are suspected to play a role in over 80 % of microbial illnesses in humans. In light of the critical requirement for efficient management of bacterial infections, researchers have explored alternative techniques for treating bacterial disorders.

View Article and Find Full Text PDF

In the rapidly evolving landscape of silver nanoparticles (Ag NPs) synthesis, the focus has predominantly been on plant-derived sources, leaving the realm of biological or animal origins relatively uncharted. Breaking new ground, our study introduces a pioneering approach: the creation of Ag NPs using marine fish collagen, termed ClAg NPs, and offers a comprehensive exploration of their diverse attributes. To begin, we meticulously characterized ClAg NPs, revealing their spherical morphology, strong crystalline structure, and average diameter of 5 to 100 nm.

View Article and Find Full Text PDF

The skin is considered the largest and most accessible organ in the human body, and allows the use of noninvasive and efficient strategies for drug administration, such as the transdermal drug delivery system (TDDS). TDDSs are systems or patches, with the ability and purpose to deliver effective and therapeutic doses of drugs through the skin. Regarding the specific interaction between hydrogels (HG) and microneedles (MNs), we seek to find out how this combination would be applied in the context of drug delivery, and we detail some possible advantages of the methods used.

View Article and Find Full Text PDF

Microbial polyhydroxyalkanoates (PHAs) are bio-based aliphatic biopolyester produced by bacteria as an intracellular storage material of carbon and energy under stressed conditions. PHAs have been paid attention to due to their unique and impressive biological properties including high biodegradability, biocompatibility, low cytotoxicity, and different mechanical properties. Under this context, the development of drug-delivery nanosystems based on PHAs has been revealed to have numerous advantages compared with synthetic polymers that included biocompatibility, biodegradability, non-toxic, and low-cost production, among others.

View Article and Find Full Text PDF

Slow-release delivery systems are needed to ensure long-term sustained treatments for retinal diseases such as age-related macular degeneration and diabetic retinopathy, which are currently treated with anti-angiogenic agents that require frequent intraocular injections. These can cause serious co-morbidities for the patients and are far from providing the adequate drug/protein release rates and required pharmacokinetics to sustain prolonged efficacy. This review focuses on the use of hydrogels, particularly on temperature-responsive hydrogels as delivery vehicles for the intravitreal injection of retinal therapies, their advantages and disadvantages for intraocular administration, and the current advances in their use to treat retinal diseases.

View Article and Find Full Text PDF

In light of the growing bacterial resistance to antibiotics and in the absence of the development of new antimicrobial agents, numerous antimicrobial delivery systems over the past decades have been developed with the aim to provide new alternatives to the antimicrobial treatment of infections. However, there are few studies that focus on the development of a rational design that is accurate based on a set of theoretical-computational methods that permit the prediction and the understanding of hydrogels regarding their interaction with cationic antimicrobial peptides (cAMPs) as potential sustained and localized delivery nanoplatforms of cAMP. To this aim, we employed docking and Molecular Dynamics simulations (MDs) that allowed us to propose a rational selection of hydrogel candidates based on the propensity to form intermolecular interactions with two types of cAMPs (MP-L and NCP-3a).

View Article and Find Full Text PDF

The Kirsten rat sarcoma viral oncogene (KRAS) is one of the most well-known proto-oncogenes, frequently mutated in pancreatic and colorectal cancers, among others. We hypothesized that the intracellular delivery of anti-KRAS antibodies (KRAS-Ab) with biodegradable polymeric micelles (PM) would block the overactivation of the KRAS-associated cascades and revert the effect of its mutation. To this end, PM-containing KRAS-Ab (PM-KRAS) were obtained using Pluronic F127.

View Article and Find Full Text PDF

Nano-based drug delivery research is increasing due to the therapeutic applications for human health care. However, traditional chemical capping-based synthesis methods lead to unwanted toxicity effects. Hence, there is an urgent need for green synthesis-based and biocompatible synthesis methods.

View Article and Find Full Text PDF

Local cancer treatment by in situ injections of thermo-responsive hydrogels (HG) offers several advantages over conventional systemic anti-cancer treatments. In this work, a biodegradable and multicompartmental HG composed of N-isopropylacrylamide, cellulose, citric acid, and ceric ammonium nitrate was developed for the controlled release of hydrophilic (doxorubicin) and hydrophobic (niclosamide) drugs. The formulation presented ideal properties regarding thermo-responsiveness, rheological behavior, drug release profile, biocompatibility, and biological activity in colon and ovarian cancer cells.

View Article and Find Full Text PDF

In currently, biosynthesis of copper oxide nanoparticles (CuO NPs) are most widely used numerous in biological applications such as biosensor, energy, medicine, agriculture, environmental and industrial wastewater treatment. The hierarchical CuO NPs was synthesized via green chemistry method by using of Abutilon indicum (A. indicum) leaf extract, its nontoxic, facile and low-cost approaches.

View Article and Find Full Text PDF

The present study shows porous activated carbon obtained from Chenopodium quinoa Willd and Quillaja saponaria and their use as potential adsorbents to remove three types of dyes from aqueous solutions. The adsorption results were compared with commercial charcoal to check their efficiency. All porous carbon materials were activated using carbon dioxide and steam and fully characterized.

View Article and Find Full Text PDF

Bacteria and their enzymatic machinery, also called bacterial cell factories, produce a diverse variety of biopolymers, such as polynucleotides, polypeptides and polysaccharides, with different and fundamental cellular functions. Polysaccharides are the most widely used biopolymers, especially in biotechnology. This type of biopolymer, thanks to its physical and chemical properties, can be used to create a wide range of advanced bio-based materials, hybrid materials and nanocomposites for a variety of exciting biomedical applications.

View Article and Find Full Text PDF

In the current scenario where more and more products containing nanomaterials are on the technological or pharmaceutical market, it is crucial to have a thorough knowledge of their toxicity before proposing possible applications. A proper analysis of the toxicity of the nanoproducts should include both in vitro and in vivo biological approaches and should consider that the synthesis and purification methods of nanomaterials may affect such toxicity. In the current work, the green synthesis of laminarin embedded ZnO nanoparticles (Lm-ZnO NPs) and their based chitosan capped ZnO nanocomposites (Ch-Lm-ZnO NCmps) is described for the first time.

View Article and Find Full Text PDF

A rational design accurate based on the use of Statistical Design of the Experiments (DoE) and Molecular Dynamics Simulations Studies allows the prediction and the understanding of thermo-responsive hydrogels prepared regarding their gelation temperature and anti-cancer drug release rate. N-isopropylacrilamide (NIPAM) modified with specific co-monomers and crosslinkers, can be used to prepare "on-demand" thermo-responsive hydrogels with the ideal properties for clinical applications in which local sustained release of drugs is crucial. Two preferential formulations resulting from the predictive studies of DoE and In Silico methods were synthesized by radical polymerization, fully characterized, and loaded with the anticancer drug Doxorubicin (Dox).

View Article and Find Full Text PDF

Pesticides are used worldwide to increase crop yields in agriculture. However, their toxicity and accumulation capacity can make them toxic to the environment, animals and humans. In the case of workers chronically exposed to these substances, they must be sampled continuously, so urine is an excellent option.

View Article and Find Full Text PDF

Despite the enormous efforts done by the scientific community in the last decades, advanced cancer is still considered an incurable disease. New formulations are continuously under investigation to improve drugs therapeutic index, i.e.

View Article and Find Full Text PDF

Cancer remains as the second leading cause of death, worldwide. Despite the enormous important advances observed in the last decades, advanced stages of the disease remain incurable. The severe side effects associated to systemic high doses of chemotherapy and the development of drug resistance impairs a safe and efficiency anticancer therapy.

View Article and Find Full Text PDF

A series of hydrogels with a specific release profile of linezolid was successfully synthesized. The hydrogels were synthesized by cross-linking polyvinyl alcohol (PVA) and aliphatic dicarboxylic acids, which include succinic acid (SA), glutaric acid (GA), and adipic acid (AA). The three crosslinked hydrogels were prepared by esterification and characterized by equilibrium swelling ratio, infrared spectroscopy, thermogravimetric analysis, mechanical properties, and scanning electron microscopy.

View Article and Find Full Text PDF

The data article refers to the paper "supramolecular hydrogel based on cellulose for sustained release of therapeutic substances with antimicrobial and wound healing properties"[1]. The dataset includes the synthesis and characterization of (E)-1,3-bis(4-(allyloxy)phenyl)prop‑2-en-1-one (3) (crosslinking agent). Moreover, the multiwall carbon nanotubes (MWCNTs) synthesis and functionalization (MWCNTs-COOH) are described.

View Article and Find Full Text PDF

A multifaceted hydrogel-based formulation was reported. The hydrogel was prepared by crosslinking cellulose and substituted chalcone. Moreover, the formulation was conjugated with carbon nanotubes with the aim of increasing the loading amount of bioactive compounds such as allantoin, dexpanthenol, resveratrol and linezolid.

View Article and Find Full Text PDF

SARS-CoV-2 is a causative agent of Coronavirus disease-19 (COVID-19), which is considered as a fatal disease for public health apprehension worldwide. This pathogenic virus can present everywhere. As it is a virus it can extend easily and cause severe illness to humans.

View Article and Find Full Text PDF