Cell-based therapy is a possible avenue for the treatment of Duchenne muscular dystrophy (DMD), an X-linked skeletal muscle-wasting disease. We have demonstrated that cultured myogenic progenitors derived from the adult skeletal muscle side population can engraft into dystrophic fibers of non-irradiated, non-chemically injured mouse models of DMD (mdx(5cv)) after intravenous and intraarterial transplantation, with engraftment rates approaching 10%. In an effort to elucidate the cell-surface markers that promote progenitor cell extravasation and engraftment after systemic transplantation, we found that expression of the chemokine receptor CXCR4, whose ligand SDF-1 is overexpressed in dystrophic muscle, enhances the extravasation of these cultured progenitor cells into skeletal muscle after intraarterial transplantation.
View Article and Find Full Text PDFCell-based therapy continues to be a promising avenue for the treatment of Duchenne muscular dystrophy (DMD), an X-linked skeletal muscle-wasting disease. Recently, we demonstrated that freshly isolated myogenic progenitors contained within the adult skeletal muscle side population (SP) can engraft into dystrophic fibers of nonirradiated mdx(5cv) mice after intravenous transplantation. Engraftment rates, however, have not been therapeutically significant, achieving at most 1% of skeletal muscle myofibers expressing protein from donor-derived nuclei.
View Article and Find Full Text PDFThe muscular dystrophies are a heterogeneous group of genetically caused muscle degenerative disorders. The Kunkel laboratory has had a longstanding research program into the pathogenesis and treatment of these diseases. Starting with our identification of dystrophin as the defective protein in Duchenne muscular dystrophy (DMD), we have continued our work on normal dystrophin function and how it is altered in muscular dystrophy.
View Article and Find Full Text PDFThe quantity of envelope glycoprotein molecules (Env) on HIV-1 particles is still an issue of debate and, depending on the strain of virus and the nature of the producer cells, it can vary greatly. Here, we have attempted to address how Env density influences HIV-1 fitness. To this aim, we have produced HIV-1-derived viral particles with various amounts of R5 Env (low Env: Envlo; high Env: Envhi), using a regulatable expression system.
View Article and Find Full Text PDFCell-based therapy for Duchenne muscular dystrophy patients and mdx mice has proven to be a safe but ineffective form of treatment. Recently, a group of cells called muscle side population (SP) cells have been isolated based on their ability to efflux the DNA-binding dye Hoechst. To understand the potential of skeletal muscle SP cells to serve as precursors for muscle, SP cells from the two mice strains mdx(5cv) and C57BL/6N were isolated, transduced, and transplanted.
View Article and Find Full Text PDFMonoclonal antibody (MAb) 667 is a neutralizing mouse monoclonal antibody recognizing the envelope glycoprotein (Env) of the ecotropic neurotropic murine retrovirus CasBrE but not that of other murine retroviruses. Since 667 can be used for preclinical studies of antiviral gene therapy as well as for studying the early events of retroviral infection, we have cloned its cDNAs and molecularly characterized it in detail. Spot technique-based experiments showed that 667 recognizes a linear epitope of 12 amino acids located in the variable region A of the receptor binding domain.
View Article and Find Full Text PDFA murine leukemia virus-derived replication-competent retroviral vector with a translational cassette for the enhanced green fluorescence protein (EGFP) was previously found to function efficiently in cell culture (Jespersen et al., 1999, Gene 239, 227-235). We here report that infection of newborn NIH Swiss mice gives rise to EGFP expression in a majority of spleen cells within the first days after infection.
View Article and Find Full Text PDFIt is known that targeted infection requires the modification of the viral envelope, in order to render it capable of recognizing and specifically binding to a marker protein of the target cell. We have previously described such a recombinant envelope, which is able to extend the tropism of an ecotropic murine leukemia viruses (MLV) envelope to MHC I-expressing human cells. Although, this envelope was very efficient in binding human cells, it yielded very low infection titers.
View Article and Find Full Text PDF