J Egypt Public Health Assoc
February 2007
This paper reports the pediculicidal activity of certain monoterpenoids of plant essential oils compared to several anti-head lice formulations. It also reports the molecular features required for a chemical to kill head lice. Live adult Pediculus humanus capitus were collected from children living in the Qabary area, Alexandria, Egypt and used in in vitro bioassays.
View Article and Find Full Text PDFArch Insect Biochem Physiol
July 2005
Octopamine receptors from American cockroach, Periplaneta americana (Pa oa1), and fruit fly, Drosophila melanogaster (OAMB), were cloned and permanently expressed in HEK-293 cells, and found to activate adenylate cyclase activity and increase [Ca2+]i levels through G-protein coupled receptor signaling pathways. Sequencing information (GenBank accession number AY333178) and functional data of Pa oa1 were recently published. Saturation binding analysis with 3H-yohimbine was performed with Pa oa(1) and OAMB expressed in COS-7 cells.
View Article and Find Full Text PDFInsect Biochem Mol Biol
April 2005
This paper reports the role of the tyramine (TA) receptor cascade in the insecticidal activity of plant essential oils. A TA receptor cDNA encoding a putative seven transmembrane domain G-protein coupled receptor was amplified from Drosophila melanogaster head cDNA phage library. The encoded protein contains 601 amino acids and has a sequence similar to other biogenic amine receptors.
View Article and Find Full Text PDFInsect Biochem Mol Biol
June 2004
Octopamine regulates multiple physiological functions in invertebrates. The biological effects of octopamine and the pharmacology of octopamine receptors have been extensively studied in the American cockroach, Periplaneta americana. This paper reports the cloning of the first octopamine receptor from Periplaneta americana.
View Article and Find Full Text PDF