Publications by authors named "Essa S Yacoub"

Neuroimaging research has implicated abnormalities in cortico-striatal-thalamic-cortical (CSTC) circuitry in pediatric obsessive-compulsive disorder (OCD). In this study, resting-state functional magnetic resonance imaging (R-fMRI) was used to investigate functional connectivity in the CSTC circuitry in adolescents with OCD. Imaging was obtained with the Human Connectome Project (HCP) scanner using newly developed pulse sequences which allow for higher spatial and temporal resolution.

View Article and Find Full Text PDF

Resting-state functional magnetic resonance imaging has become a powerful tool for the study of functional networks in the brain. Even "at rest," the brain's different functional networks spontaneously fluctuate in their activity level; each network's spatial extent can therefore be mapped by finding temporal correlations between its different subregions. Current correlation-based approaches measure the average functional connectivity between regions, but this average is less meaningful for regions that are part of multiple networks; one ideally wants a network model that explicitly allows overlap, for example, allowing a region's activity pattern to reflect one network's activity some of the time, and another network's activity at other times.

View Article and Find Full Text PDF

In this paper, Kohonen's self-organizing mapping (SOM) is used as a data-driven technique for analyzing functional magnetic resonance imaging (fMRI) data. Upon the completion of an SOM analysis, a cluster merging technique, based on examining the reproducibility of the fMRI data across epochs, is utilized to merge SOM nodes whose feature vectors are sufficiently similar to one another. The resulting 'super nodes' give time course templates of potential interest.

View Article and Find Full Text PDF