Publications by authors named "Esra Cansever Mutlu"

Extracellular vesicles (EVs), including exosomes, microvesicles, and other lipid vesicles derived from cells, play a pivotal role in intercellular communication by transferring information between cells. EVs secreted by progenitor and stem cells have been associated with the therapeutic effects observed in cell-based therapies, and they also contribute to tissue regeneration following injury, such as in orthopaedic surgery cases. This review explores the involvement of EVs in nerve regeneration, their potential as drug carriers, and their significance in stem cell research and cell-free therapies.

View Article and Find Full Text PDF

Principal component analysis (PCA) as a machine-learning technique could serve in disease diagnosis and prognosis by evaluating the dynamic morphological features of exosomes via Cryo-TEM-imaging. This hypothesis was investigated after the crude isolation of similarly featured exosomes derived from the extracellular vehicles (EVs) of immature dendritic cells (IDCs) JAWSII. It is possible to identify functional molecular groups by FTIR, but the unique physical and morphological characteristics of exosomes can only be revealed by specialized imaging techniques such as cryo-TEM.

View Article and Find Full Text PDF

Immature dendritic cells (IDc), 'dexosomes', are promising natural nanomaterials for cancer diagnose and therapy. Dexosomes were isolated purely from small-scale-up production by using t25-cell-culture flasks. Total RNA was measured as 1.

View Article and Find Full Text PDF

Electrospray is a promising technique to scale-up production of microparticles and nanoparticles. In this study, electrospraying was used in order to produce candidate biopatches (CPH) by using chitosan, poly(ethylene glycol) (PEG) and hyaluronic acid (HA). Four different ratios of polymer blend compositions (CPH1, CPH2, CPH3 and CPH4) were tested by dissolving in 2% acetic acid solution (Ac.

View Article and Find Full Text PDF

Since last decade, sugar based biopolymers are recognized in nanomedicine as promising materials for cancer imaging and therapy. Their durable, biocompatible and adhesive properties enable the fine tuning of their molecular weights (MW) and their miscellaneous nature makes the molecules acquire various conformations. These in turn provide effective endocytosis by cancer cell membranes that have already been programmed for internalization of different kinds of sugars.

View Article and Find Full Text PDF

Ternary blend films of chitosan, PEO (300,000) and levan were prepared by solution casting method and their phase behavior, miscibility, thermal and mechanical properties as well as their surface energy and morphology were characterized by different techniques. FT-IR analyses of blend films indicated intermolecular hydrogen bonding between blend components. Thermal and XRD analysis showed that chitosan and levan suppressed the crystallinity of PEO up to nearly 25% of PEO content in the blend, which resulted in more amorphous film structures at higher PEO/(chitosan+levan) ratios.

View Article and Find Full Text PDF

Synthesis of nanostructured thin films of pure and oxidized levan exopolysaccharide by matrix-assisted pulsed laser evaporation is reported. Solutions of pure exopolysaccharides in dimethyl sulfoxide were frozen in liquid nitrogen to obtain solid cryogenic pellets that have been used as targets in pulsed laser evaporation experiments with a KrF* excimer source. The expulsed material was collected and assembled onto glass slides and Si wafers.

View Article and Find Full Text PDF