Fiber-optic hydrophones (FOHs) are widely used to detect high-intensity focused ultrasound (HIFU) fields. The most common type consists of an uncoated single-mode fiber with a perpendicularly cleaved end face. The main disadvantage of these hydrophones is their low signal-to-noise ratio (SNR).
View Article and Find Full Text PDFLaser-generated focused ultrasound (LGFU) transducers used for ultrasound therapy commonly have large diameters (6-15 mm), but smaller lateral dimensions (<4 mm) are required for interventional applications. To address the question of whether miniaturized LGFU transducers could generate sufficient pressure at the focus to enable therapeutic effects, a modelling and measurement study is performed. Measurements are carried out for both linear and nonlinear propagation for various illumination schemes and compared with the model.
View Article and Find Full Text PDFPhotoacoustic microscopy (PAM) is classified as a hybrid imaging technique based on the photoacoustic effect and has been frequently studied in recent years. Photoacoustic (PA) signals are inherently recorded in a noisy environment and are also exposed to noise by system components. Therefore, it is essential to reduce the noise in PA signals to reconstruct images with less error.
View Article and Find Full Text PDFIt has been reported that acoustic waves are generated when a high-energy pulsed proton beam is deposited in a small volume within tissue. One possible application of proton-induced acoustics is to get real-time feedback for intra-treatment adjustments by monitoring such acoustic waves. A high spatial resolution in ultrasound imaging may reduce proton range uncertainty.
View Article and Find Full Text PDFPhotoacoustic imaging is based on the detection of generated acoustic waves through thermal expansion of tissue illuminated by short laser pulses. Fiber lasers as an excitation source for photoacoustic imaging have recently been preferred for their high repetition frequencies. Here, we report a unique fiber laser developed specifically for multiwavelength photoacoustic microscopy system.
View Article and Find Full Text PDFWe investigate the radiation force on a microbubble due to the photoacoustic wave which is generated by using a pulsed laser. In particular, we focus on the dependence of pulsed laser parameters on the radiation force. In order to do so, we first obtain a new and comprehensive analytical solution to the photoacoustic wave equation based on the Fourier transform for various absorption profiles.
View Article and Find Full Text PDF