Publications by authors named "Esposti M"

Bid is an abundant proapoptotic protein of the Bcl-2 family that is crucial for the induction of death receptor-mediated apoptosis in primary tissues such as liver. Bid action has been proposed to involve the relocation of its truncated form, tBid, to mitochondria to facilitate the release of apoptogenic cytochrome c. The mechanism of Bid relocation to mitochondria was unclear.

View Article and Find Full Text PDF

NK cells mediate early host defense against viral infection. In murine CMV (MCMV) infection NK cells play a critical role in controlling viral replication in target organs, such as spleen and liver. Until now it has not been possible to directly examine the role of NK cells in MCMV-induced inflammation in situ due to the inability to stain specifically for NK cells in infected tissues.

View Article and Find Full Text PDF

Viruses that establish a persistent infection with their host have evolved numerous strategies to evade the immune system. Consequently, they are useful tools to dissect the complex cellular processes that comprise the immune response. Rapid progress has been made in recent years in defining the role of cellular MHC class I molecules in regulating the response of natural killer (NK) cells.

View Article and Find Full Text PDF

The study of 'molecular mimicry' or 'genetic piracy', with respect to the utilisation of cellular genes captured and modified during the course of virus evolution, has been an area of increasing research with the expansion in virus genome sequencing. Examples of cellular immunomodulatory genes which have been captured from hosts have been identified in a number of viruses. This review concentrates upon studies of murine cytomegalovirus (MCMV), investigating the functions of viral genes homologous to G protein-coupled receptors, MHC class I and chemokines.

View Article and Find Full Text PDF

During apoptosis, an important pathway leading to caspase activation involves the release of cytochrome c from the intermembrane space of mitochondria. Using a cell-free system based on Xenopus egg extracts, we examined changes in the outer mitochondrial membrane accompanying cytochrome c efflux. The pro-apoptotic proteins, Bid and Bax, as well as factors present in Xenopus egg cytosol, each induced cytochrome c release when incubated with isolated mitochondria.

View Article and Find Full Text PDF

Investigations into the capacity of the Bcl-2 protein to prevent apoptosis have targeted mitochondria as key sites of the preventative action accorded by Bcl-2 to cells. Using novel approaches with fluorescence probes and autofluorescence detection of endogenous NAD(P)H, we have examined the effects of expressing Bcl-2 in the Bcl-2 negative Burkitt's lymphoma cell line Daudi. We evaluated for the first time the effect of Bcl-2 expression on the intracellular distribution and production of hydrogen peroxide, under basal conditions and after treatment with apoptosis inducing agents, ceramide analogs and tumor necrosis factor (TNF)-alpha.

View Article and Find Full Text PDF

It has been hypothesised that mitochondrial dysfunction in pancreatic beta cells could produce hyper-expression of glutamic acid decarboxylase (GAD), a major autoantigen in insulin-dependent diabetes mellitus (IDDM) (Degli Esposti, M. and Mackay, I.R.

View Article and Find Full Text PDF

Until now, it has been unclear whether murine cytomegalovirus (MCMV)-encoded protein m144 directly regulates natural killer (NK) cell effector function and whether the effects of m144 are only strictly evident in the context of MCMV infection. We have generated clones of the transporter associated with antigen processing (TAP)-2-deficient RMA-S T lymphoma cell line and its parent cell line, RMA, that stably express significant and equivalent levels of m144. In vivo NK cell-mediated rejection of RMA-S-m144 lymphomas was reduced compared with rejection of parental or mock-transfected RMA-S clones, indicating the ability of m144 to regulate NK cell-mediated responses in vivo.

View Article and Find Full Text PDF

Chemokines are important mediators of the early inflammatory response to infection and modify a wide range of host immune responses. Functional homologs of cellular chemokines have been identified in a number of herpesviruses, suggesting that the subversion of the host chemokine response contributes to the pathogenesis of these viruses. Transcriptional and reverse transcription-PCR analyses demonstrated that the murine cytomegalovirus (MCMV) chemokine homolog, m131, was spliced at the 3' end to the adjacent downstream open reading frame, m129, resulting in a predicted product of 31 kDa, which is significantly larger than most known chemokines.

View Article and Find Full Text PDF

Natural killer (NK) cells are an important component of the innate cellular immune system. They are particularly important during the early immune responses following virus infection, prior to the induction of cytotoxic T cells (CTL). Unlike CTL, which recognize specific peptides displayed on the surface of cells by class I MHC, NK cells respond to aberrant expression of cell surface molecules, in particular class I MHC, in a non-specific manner.

View Article and Find Full Text PDF

The last 18 months have witnessed the characterization of several new members of the tumor necrosis factor (TNF) receptor family. Among these are five receptors for the cytotoxic ligand TRAIL (TNF-related apoptosis-inducing ligand). Two of these receptors, TRAIL-R1 and TRAIL-R2, contain classical cytoplasmic death domains and are able to transduce an apoptotic signal.

View Article and Find Full Text PDF

We report the effect on complex I function of the 14484 Leber's hereditary optic neuropathy (LHON) mutation affecting the ND6 subunit gene. The same gene was also reported to carry another mutation, at position 14459, associated with the LHON/dystonia phenotype that induces a reduction of complex I-specific activity and increases the sensitivity to the product decylubiquinol. Given the proximity of both mutations in the ND6 gene, we tested the specific activity of complex I and its sensitivity to myxothiazol and nonylbenzoquinol, both inhibitors at the ubiquinol product site, in platelet submitochondrial particles from nine 14484 homoplasmic individuals, 8 Italians with Caucasian mtDNA haplogroup J (adjunctive 4216 and 13708 mutations), and 1 Tunisian with an African mtDNA haplogroup.

View Article and Find Full Text PDF

Observations of apoptosis in virtual anaerobiosis have raised doubts on the significance of reactive oxygen species in the cascade of events of programmed cell death. This work presents evidence that cells and mitochondrial preparations produce similar levels of hydrogen peroxide under either aerobic or virtually anaerobic conditions. These levels are relevant to the increased production of radicals induced by a ceramide analog that promotes apoptosis.

View Article and Find Full Text PDF

This article provides an updated overview of the plethora of complex I inhibitors. The inhibitors are presented within the broad categories of natural and commercial compounds and their potency is related to that of rotenone, the classical inhibitor of complex I. Among commercial products, particular attention is dedicated to inhibitors of pharmacological or toxicological relevance.

View Article and Find Full Text PDF

A fourth member of the emerging TRAIL receptor family, TRAIL-R4, has been cloned and characterized. TRAIL-R4 encodes a 386-amino acid protein with an extracellular domain showing 58%-70% identity to those of TRAIL-R1, TRAIL-R2, and TRAIL-R3. The signaling capacity of TRAIL-R4 is similar to that of TRAIL-R1 and TRAIL-R2 with respect to NF-kappaB activation, but differs in its inability to induce apoptosis.

View Article and Find Full Text PDF

TRAIL-R3, a new member of the TRAIL receptor family, has been cloned and characterized. TRAIL-R3 encodes a 299 amino acid protein with 58 and 54% overall identity to TRAIL-R1 and -R2, respectively. Transient expression and quantitative binding studies show TRAIL-R3 to be a plasma membrane-bound protein capable of high affinity interaction with the TRAIL ligand.

View Article and Find Full Text PDF

TRAIL is a member of the tumor necrosis factor (TNF) family of cytokines and induces apoptosis in a wide variety of cells. Based on homology searching of a private database, a receptor for TRAIL (DR4 or TRAIL-R1) was recently identified. Here we report the identification of a distinct receptor for TRAIL, TRAIL-R2, by ligand-based affinity purification and subsequent molecular cloning.

View Article and Find Full Text PDF

To clarify the bioenergetic relevance of mtDNA mutations in Leber's hereditary optic neuropathy (LHON), we investigated affected individuals and healthy carriers from six Italian LHON families harboring the 11778/ND4 and the 3460/ND1 mtDNA mutations. The enzymatic activities of mitochondrial complex I and its sensitivity to the potent inhibitors rotenone and rolliniastatin-2 were studied in mitochondrial particles from platelets, in correlation with mtDNA analysis of platelets and leukocytes. In platelets homoplasmic for mutant mtDNA, both 11778/ND4 and 3460/ND1 mutations induced resistance to rotenone and the 3460/ND1 mutation also provoked a marked decrease in the specific activity of complex I.

View Article and Find Full Text PDF

To investigate the energy-conserving function of the NADH:ubiquinone reductase (complex I), we have selected oxonol VI [bis(3-propyl-5-oxoisoxazol-4-yl)pentamethine oxonol] as the most sensitive probe for measuring the reactions of membrane potential generation in submitochondrial particles. Calibration of the oxonol signals with potassium diffusion potentials shows a non-linear response after a threshold around -50 mV. Thermodynamic evaluations indicate that the upper limit of the oxonol response to the potential generated by complex I is around -220 mV, which is close to the maximal protonmotive force in coupled submitochondrial particles.

View Article and Find Full Text PDF

The lymphotoxin beta receptor (LT beta R) was originally described as a transcribed sequence encoded on human chromosome 12p, with homology to the TNF receptor family. Subsequently, a recombinant LT beta R was shown to bind LT alpha LT beta heteromeric complexes. In this study, we have shown that LT beta R is expressed in a variety of tissues and cell lines of monocytic lineage, as well as in fibroblast and human melanoma cell lines.

View Article and Find Full Text PDF

As part of the ongoing studies aimed at elucidating the mechanism of the energy conserving function of mitochondrial complex I, NADH: ubiquinone (Q) reductase, we have investigated how short-chain Q analogs activate the proton pumping function of this complex. Using a pH-sensitive fluorescent dye we have monitored both the extent and initial velocity of proton pumping of complex I in submitochondrial particles. The results are consistent with two sites of interaction of Q analogs with complex I, each having different proton pumping capacity.

View Article and Find Full Text PDF