Publications by authors named "Espinoza-Beltran F"

Atomic force acoustic microscopy is a dynamic technique where the resonances of a cantilever, that has its tip in contact with the sample, are used to quantify local elastic properties of surfaces. Since the contact resonance frequencies (CRFs) monotonically increase with the tip-sample contact stiffness, they are used to evaluate the local elastic properties of the surfaces through a suitable contact mechanical model. The CRFs depends on both, normal and lateral contact stiffness, kN and kS respectively, where the last one is taken either as constant (kS<1), or as zero, leading to uncertainty in the estimation of the elastic properties of composite materials.

View Article and Find Full Text PDF

In this study, Ti-Zr and Ti-Zr-C coatings were deposited at room temperature via pulsed-DC magnetron sputtering. A 70Ti-30Zr at% target and a 99.99% graphite plate were used to deposit samples.

View Article and Find Full Text PDF

Nanocomposed films constituted by gold nanoparticles immobilized onto polyelectrolytes were obtained and studied. To obtain the films, amino terminated silicon wafer surfaces were put in contact with aqueous solution of polyelectrolytes derived from Poly(maleic anhydride-alt-styrene) containing aryl and amine-alkyl groups in the side chains, in this condition the adsorption of macromolecules was achieved. The effects of the chemical nature of the side chains and ionic strength on the amounts of adsorbed polyelectrolytes were studied by ellipsometry.

View Article and Find Full Text PDF

A new resonance-tracking (RT) method using fast frequency sweeping excitation was developed for quantitative scanning probe microscopy (SPM) imaging. This method allows quantitative imaging of elastic properties and ferroelectrical domains with nanoscale resolution at high data acquisition rates. It consists of a commercial AFM system combined with a high-frequency lock-in amplifier, a programmed function generator and a fast data acquisition card.

View Article and Find Full Text PDF