Publications by authors named "Espinosa-Garcia W"

We have studied, by means of first-principles calculations, the electronic and optical properties of the sulvanite family: CuMX (M  =  V, Nb, Ta and X  =  S, Se), which, due to its broad range of gaps and chemical stability, have emerged as promising materials for technological applications such as photovoltaics and transparent conductivity. To address the reliability of those properties we have used semi-local and hybrid functionals (PBEsol, HSE06), many-body perturbation theory (GW approximation and Bethe-Salpeter equation), and time-dependent density functional theory (revised bootstrap kernel) to calculate the quasi-particle dispersion relation, band gaps, the imaginary part of the macroscopic dielectric function and the absorption coefficient. The calculated valence band maximum and the conduction band minimum are located at the R and X-points, respectively.

View Article and Find Full Text PDF

First-principles quasi-particle theory has been employed to assess catalytic power of graphitic carbon nitride, g-C3N4, for solar fuel production. A comparative study between g-h-triazine and g-h-heptazine has been carried out taking also into account van der Waals dispersive forces. The band edge potentials have been calculated using a recently developed approach where quasi-particle effects are taken into account through the GW approximation.

View Article and Find Full Text PDF