Peripheral nerve injury-induced mechanical allodynia is often accompanied by abnormalities in the higher cortical regions, yet the mechanisms underlying such maladaptive cortical plasticity remain unclear. Here, we show that in male mice, structural and functional changes in the primary somatosensory cortex (S1) caused by peripheral nerve injury require neuron-microglial signaling within the local circuit. Following peripheral nerve injury, microglia in the S1 maintain ramified morphology and normal density but up-regulate the mRNA expression of brain-derived neurotrophic factor (BDNF).
View Article and Find Full Text PDFObjectives: Spinal cord ischemia secondary to trauma or a vascular occlusive event is a threatening phenomenon. The neuroprotective properties of minocycline have been shown in several models of central nervous system diseases and after spinal cord ischemia; however, the benefit of using the drug requires additional confirmation in different animal models. Astrocytes are essential as regulators of neuronal functions and for providing nutrients.
View Article and Find Full Text PDFIn DRG an increase in miR-133b-3p, miR-143-3p, and miR-1-3p correlates with the lack of development of neuropathic pain following a peripheral nerve injury. Using lentiviral (LV) vectors we found that a single injection of LV-miR-133b-3p or LV-miR-143-3p immediately after a peripheral nerve injury prevented the development of sustained mechanical and cold allodynia. Injection of LV-miR-133b-3p or LV-miR-143-3p by themselves or in combination, on day 3 post-injury produced a partial and transient reduction in mechanical allodynia and a sustained decrease in cold allodynia.
View Article and Find Full Text PDFPrevious studies have shown that following peripheral nerve injury there was a downregulation of the gap junction protein connexin 36 (Cx36) in the spinal cord; however, it is not known whether Cx36 protein is expressed in the dorsal root ganglia (DRGs), nor if its levels are altered following peripheral nerve injuries. Here we address these aspects in the adult rat lumbar DRG. Cx36 mRNA was detected using qRT-PCR, and Cx36 protein was identified in DRG sections using immunohistochemistry (IHC) and immunofluorescence (IF).
View Article and Find Full Text PDFBackground: The GluN2B subunit of the N-methyl-D-aspartate receptor (NMDAr) modulates many physiological processes including learning, memory, and pain. Excessive increase in NMDAr/GluN2B activity has been associated with various disorders such neuropathic pain and neuronal death following hypoxia. Thus there is an interest in identifying NMDAr antagonists that interact specifically with the GluN2B subunit.
View Article and Find Full Text PDFDifferent classes of Kv1 potassium channels have different trafficking patterns despite having very similar amino acid sequences. Two amino acids responsible for these differences have been identified in the outer pore turret region of Kv1.1 and Kv1.
View Article and Find Full Text PDFFollowing injury, primary sensory neurons undergo changes that drive central sensitization and contribute to the maintenance of persistent hypersensitivity. NR2B expression in the dorsal root ganglia (DRG) has not been previously examined in neuropathic pain models. Here, we investigated if changes in NR2B expression within the DRG are associated with hypersensitivities that result from peripheral nerve injuries.
View Article and Find Full Text PDFBackground: AMPAkines augment the function of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the brain to increase excitatory outputs. These drugs are known to relieve persistent pain. However, their role in acute pain is unknown.
View Article and Find Full Text PDFBackground: The function of the Cannabinoid 1 receptor (CB1R) in the development of neuropathic pain is not clear. Mounting evidence suggest that CB1R expression and activation may contribute to pain. Cannabinoid 1 receptor knockout mice (CB1R-/-) generated on a C57Bl/6 background exhibit hypoalgesia in the hotplate assay and formalin test.
View Article and Find Full Text PDFBackground: Volatile anesthetics decrease Ca²⁺ entry through voltage-dependent Ca²⁺ channels. Ca influences neurotransmitter release and neuronal excitability. Because volatile anesthetics act specifically on the spinal cord to produce immobility, we examined the effect of isoflurane and the nonimmobilizers F6 (1, 2-dichlorohexafluorocyclobutane) and F8 (2, 3-dichlorooctafluorobutane) on CaV1 and CaV2 Ca²⁺ channels in spinal cord motor neurons and dorsal root ganglion neurons.
View Article and Find Full Text PDFKv1.4 potassium channels are heavily glycosylated proteins involved in shaping action potentials and in neuronal excitability and plasticity. Kv1.
View Article and Find Full Text PDFPeripheral nerve injury alters the expression of hundreds of proteins in dorsal root ganglia (DRG). Targeting some of these proteins has led to successful treatments for acute pain, but not for sustained post-operative neuropathic pain. The latter may require targeting multiple proteins.
View Article and Find Full Text PDFProliferation of endogenous neural stem/progenitor cells (NSPCs) has been identified in both normal and injured adult mammalian spinal cord. Yet the signaling mechanisms underlying the regulation of adult spinal cord NSPCs proliferation and commitment toward a neuronal lineage remain undefined. In this study, the role of three growth factor-mediated signaling pathways in proliferation and neuronal differentiation was examined.
View Article and Find Full Text PDFBackground: Neuraxial local anesthetics may have neurological complications thought to be due to neurotoxicity. A primary site of action of local anesthetics is the dorsal root ganglia (DRG) neuron. Physiologic differences have been noted between young and adult DRG neurons; hence, the authors examined whether there were any differences in lidocaine-induced changes in calcium and lidocaine toxicity in neonatal and adult rat DRG neurons.
View Article and Find Full Text PDFSpinal cord motor neuron cultures are an important tool for the study of mechanisms involved in motor neuron survival, degeneration and regeneration, volatile anesthetic-induced immobility, motor neuron disorders such as amyotrophic lateral sclerosis or spinal muscular atrophy as well as in spinal cord injury. Embryonic spinal cord motor neurons derived from rats have been successfully cultured; unfortunately, the culture of adult motor neurons has been problematic due to their short-term survival. Recently, by using a cocktail of target-derived factors, neurotrophins (brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor) and a permeable cyclic adenosine monophosphate analog, we have established a reproducible protocol for long-term cultures of healthy and functional adult motor neurons (Exp Neurol 220:303-315, 2009).
View Article and Find Full Text PDFFront Neurosci
October 2012
In contrast to the adult brain, the adult spinal cord is a non-neurogenic environment. Understanding how to manipulate the spinal cord environment to promote the formation of new neurons is an attractive therapeutic strategy for spinal cord injury and disease. The cannabinoid 1 receptor (CB1R) has been implicated as a modulator of neural progenitor cell proliferation and fate specification in the brain; however, no evidence exists for modulation of adult spinal cord progenitor cells.
View Article and Find Full Text PDFSialylation is an important carbohydrate modification of glycoconjugates that has been shown to modulate many cellular/molecular interactions in vertebrates. In Drosophila melanogaster (Dm), using sequence homology, several enzymes of the sialylation pathway have been cloned and their function tested in expression systems. Here we investigated whether sialic acid incorporation in cultured Dm central nervous system (CNS) neurons required endogenously expressed Dm sialic acid synthase (DmSAS).
View Article and Find Full Text PDFBackground: Calmodulin (CaM) activation by Ca(2+), its translocation to the nucleus, and stimulation of phosphorylation of cyclic adenosine monophosphate response element-binding protein (CREB) (P-CREB) are necessary for new gene expression and have been linked to long-term potentiation, a process important in memory formation. Because isoflurane affects memory, we tested whether isoflurane interfered with the translocation of CaM to the neuronal cell nucleus and attenuated the formation P-CREB.
Methods: SH-SY5Y cells, a human neuroblastoma cell line, were cultured.
Embryonic spinal cord motor neurons (MNs) can be maintained in vitro for weeks with a cocktail of trophic factors and muscle-derived factors under serum-containing conditions. Here we investigated the beneficial effects of muscle-derived factors in the form of muscle-conditioned medium (MCM) on the survival and neurite outgrowth of adult rat spinal cord MNs under serum-free conditions. Ventral horn dissociated cell cultures from the cervical enlargement were maintained in the presence of one or more of the following factors: brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), a cell permeant cyclic adenosine-3',5'-monophosphate (cAMP) analog and MCM.
View Article and Find Full Text PDFBackground: In addition to inhibiting the excitation conduction process in peripheral nerves, local anesthetics (LAs) cause toxic effects on the central nervous system, cardiovascular system, neuromuscular junction, and cell metabolism. Different postoperative neurological complications are ascribed to the cytotoxicity of LAs, but the underlying mechanisms remain unclear. Because the clinical concentrations of LAs far exceed their EC(50) for inhibiting ion channel activity, ion channel block alone might not be sufficient to explain LA-induced cell death.
View Article and Find Full Text PDFVoltage-gated potassium Kv1 channels have three extracellular linkers, the S1-S2, the S3-S4, and the S5-P. The S1-S2 is the only linker that has an N-glycan and it is at a conserved position on this linker on Kv1.1-Kv1.
View Article and Find Full Text PDFIn SH-SY5Y cells we have shown that stimulation with high extracellular K+ ([K+]e) evokes a transient increase in cytoplasmic Ca2+ ([Ca2+]cyt) (K+on) that is triggered by the opening of voltage-dependent Ca2+ channels and followed by Ca2+ -induced Ca2+ release from the endoplasmic reticulum (Xu, F., Zhang, J., Recio-Pinto, E.
View Article and Find Full Text PDFWe presented evidence previously that decreasing the glycosylation state of the Kv1.1 potassium channel modified its gating by a combined surface potential and a cooperative subunit interaction mechanism and these effects modified simulated action potentials. Here we continued to test the hypothesis that glycosylation affects channel function in a predictable fashion by increasing and decreasing the glycosylation state of Kv1.
View Article and Find Full Text PDFFura-2 is one of the most widely used cytoplasmic Ca2+ ([Ca2+]cyt) sensors. In studies using isolated dorsal root ganglion (DRG) neurons, the loading of Fura-2 AM is often facilitated by the use of pluronic F-127. In preliminary studies, we detected that the use of pluronic F-127 appeared to be affecting the depolarization-evoked [Ca2+]cyt transient in DRG neurons.
View Article and Find Full Text PDFTrypanosome lytic factor 1 (TLF1) is a subclass of human high-density lipoprotein that kills some African trypanosomes thereby protecting humans from infection. We have shown that TLF1 is a 500 kDa HDL complex composed of lipids and at least seven different proteins. Here we present evidence outlining a new paradigm for the mechanism of lysis; TLF1 forms cation-selective pores in membranes.
View Article and Find Full Text PDF