This work investigates the possibilities of high-resolution continuum source graphite furnace molecular absorption spectrometry for the direct determination of Cl in solid samples via the CaCl molecule and measurement of its molecular absorption. The method proposed is based on addition of 400µg Ca as molecule-forming reagent and of 20µgPd as chemical modifier, which helps to stabilize the analyte and enhances sensitivity. The molecular spectrum for CaCl offers different lines with different limits of detection and linear ranges, which permitted to analyze solid samples with different Cl contents.
View Article and Find Full Text PDFThe recent arrival of high-resolution continuum source atomic absorption spectrometry represents a potential revolution in this field, in particular for direct analysis of complex samples. This review tries to illustrate the main advantages of this technology, paying particular attention to the development of direct solid sampling methods. Three solid sampling applications will be discussed, each one of them highlighting one of the main advantages of this technique.
View Article and Find Full Text PDFLaser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) is a solid sampling technique in continuous expansion in all types of research fields in which direct multi-elemental or isotopic analysis is required. In particular, this technique shows unique characteristics that made its use recommended in many archaeometric applications, where valuable solid artifacts are often the target samples, because it offers flexibility to achieve spatially resolved information with high detection power and a wide linear range, in a fast and straightforward way, and with minimal sample damage. The current review provides a systematic survey of publications that reported the use of LA-ICPMS in an archaeological context, highlights its main capabilities and limitations and discusses the most relevant parameters that influence the performance of this technique for this type of application.
View Article and Find Full Text PDFThree cholesterol biosensor configurations based on the formation of a layer of Prussian-Blue (PB) on a Pt electrode for the electrocatalytic detection of the H(2)O(2) generated during the enzymatic reaction of cholesterol with cholesterol oxidase (ChOx) were constructed. The enzyme was entrapped within a polypyrrole (PPy) layer electropolymerized onto the PB film. The influence of the formation of self-assembled monolayers (SAMs) on the Pt surface on the adherence and stability of the PB layer and the formation of an outer layer of nafion (Nf) as a means of improving selectivity were both studied.
View Article and Find Full Text PDFIn this work, several red-colored paintings of post-Paleolithic schematic style found in 10 different shelters in the vicinity of the Vero River (Huesca) were sampled and subjected to analysis by means of scanning electron microscopy-energy-dispersive X-ray spectrometry (SEM-EDX), Raman spectroscopy, and laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). The goal of this research was to obtain meaningful information on the samples composition, in order to establish differences or similarities among them. The combined use of these techniques proved beneficial, as Raman data permitted structural information on the compounds present (hematite was identified as the main pigment, whereas calcite and gypsum are the main components of the substrate layer, as well as of the accretions that covered the pigments) to be obtained, while the quantitative values obtained by SEM were suitable for the use of Ca as internal reference during LA-ICPMS analysis.
View Article and Find Full Text PDF