Temporally (1965-2015) and spatially (55°-70°N) extensive records of total mercury (Hg) in freshwater fish showed consistent declines in boreal and subarctic Fennoscandia. The database contains 54 560 fish entries ( n: pike > perch ≫ brown trout > roach ≈ Arctic charr) from 3132 lakes across Sweden, Finland, Norway, and Russian Murmansk area. 74% of the lakes did not meet the 0.
View Article and Find Full Text PDFThere are contradicting results on the importance of legacy mercury (Hg) contaminated sediments to Hg fish tissue concentrations. Still, sediment remediation actions often aim at minimizing ecosystem exposure and human risk caused by the consumption of fish and seafood. The aim of this study was to investigate the possible influence of a permanently submerged meadow on the availability and transfer of Hg from sediment to biota, three decades after the Hg discharges was halted and the previous biota survey was carried out, in the severely contaminated brackish fjord Gunneklevfjorden in southern Norway.
View Article and Find Full Text PDFMacrophytes are shown to affect the microbial activity in different aqueous environments, with an altering of the sediment cycling of mercury (Hg) as a potential effect. Here, we investigated how a meadow with permanently submerged macrophytes in a contaminated brackish fjord in southern Norway influenced the conditions for sulfate reducing microbial activity, the methyl-Hg (MeHg) production and the availability of MeHg. Historically discharged Hg from a chlor-alkali plant (60-80tons, 1947-1987) was evident through high Hg concentrations (491mgTot-Hgkg, 268μgMeHgkg) in intermediate sediment depths (10-20cm) outside of the meadow, with reduced concentrations within the meadow.
View Article and Find Full Text PDFSelenium (Se), mercury (Hg), and stable isotopes of nitrogen (δN) and carbon (δC) have been investigated in free-ranging brown trout (Salmo trutta) from five large lakes/hydropower reservoirs within the River Skienselva watercourse, Southern Norway. The main purpose of the study was to investigate geographical patterns of the two elements within this large catchment. We also wanted to investigate whether Hg concentration in trout were negatively associated to their Se content, hence indicating an ameliorating effect of Se on Hg bioaccumulation.
View Article and Find Full Text PDFSci Total Environ
October 2016
We have investigated bioaccumulation and trophic transfer of both mercury (Hg) and selenium (Se) in two lakes in southern Norway to reveal a suggested mitigating effect of Se on Hg biota accumulation. The study included analysis of total Se (Se), total Hg (Hg), and methyl-mercury (MeHg) in water, littoral and pelagic invertebrates and perch (Perca fluviatilis), together with stable isotope analysis (δ(15)N and δ(13)C) in biota. Mean dissolved Se ranged from 22 to 59ngL(-1), while Hg and MeHg in lake water ranged from 1 to 3ngL(-1) and 0.
View Article and Find Full Text PDFEffects of wildfire on main water chemistry and mercury (Hg) in water and biota were studied during the first 4 post-fire years. After severe water chemical conditions during hydrological events a few months following the wildfire, the major water chemical parameters were close to pre-fire conditions 4 years after the fire. Concentrations of total Hg and methyl Hg in the surface water 4 years after the fire ranged between 1.
View Article and Find Full Text PDFEnvironmental drivers of total mercury (TotHg) concentrations, methylmercury (MeHg) concentrations, and MeHg fractions (a proxy for methylation potential, expressed as %MeHg) were assessed in a synoptic study of 51 lakes in southeast (Boreal) and northeast (Subarctic) Norway. Concentrations of TotHg and MeHg ranged between 0.5-6.
View Article and Find Full Text PDFAtlantic salmon (Salmo salar) is among the most sensitive organisms toward acidic, aluminum exposure. Main documented responses to this type of stress are a combination of hypoxia and loss of blood plasma ions. Physiological responses to stress in fish are often grouped into primary, secondary and tertiary responses, where the above mentioned effects are secondary responses, while primary responses include endocrine changes as measurable levels of catecholamines and corticosteroids.
View Article and Find Full Text PDFThe toxicity of aluminium to fish is related to interactions between aluminium and the gill surface. We investigated the possible effect of water ionic strength on this interaction. The mortality of brown trout (Salmo trutta L.
View Article and Find Full Text PDFAcid neutralizing capacity (ANC) is the parameter most commonly used as chemical indicator for fish response to acidification. Empirical relationships between fish status of surface waters and ANC have been documented earlier. ANC is commonly calculated as the difference between base cations ([BC]=[Ca2+]+[Mg2+]+[N+]+[K+]) and strong acid anions ([SAA]=[SO4(2)-]+[NO3-]+[Cl-]).
View Article and Find Full Text PDFEnviron Monit Assess
January 2002
The goal of this work was to assess risk of chemical and biological effects of metals in reacidified, limed water bodies in Norway and Sweden. The risk assessment is based on a literature review and evaluations of water chemical data from the 1995 Nordic Lake Survey. Compared to the pre-liming period, it us unlikely that enhanced remobilization of inorganic aluminium (Al) or other toxic metals (metal bomb hypothesis) from the catchment, the lake sediment and/or the streambed will occur when limed waters reacidify.
View Article and Find Full Text PDF