Publications by authors named "Esmon N"

Rebalance of coagulation and anticoagulation to achieve a hemostatic effect has recently gained attention as an alternative therapeutic strategy for hemophilia. We engineered a humanized chimeric antibody, SR604, based on a previously published murine antibody, HAPC1573, which selectively blocks the anticoagulant activity of human activated protein C (APC). SR604 effectively blocked the anticoagulation activities of APC in human plasma deficient in various coagulation factors in vitro with affinities ∼60 times greater than that of HAPC1573.

View Article and Find Full Text PDF

Hemophilia A and B are hereditary coagulation defects resulting in unstable blood clotting and recurrent bleeding. Current factor replacement therapies have major limitations such as the short half-life of the factors and development of inhibitors. Alternative approaches to rebalance the hemostasis by inhibiting the anticoagulant pathways have recently gained considerable interest.

View Article and Find Full Text PDF

Thrombin-mediated proteolysis is central to hemostatic function but also plays a prominent role in multiple disease processes. The proteolytic conversion of fII to α-thrombin (fIIa) by the prothrombinase complex occurs through 2 parallel pathways: (1) the inactive intermediate, prethrombin; or (2) the proteolytically active intermediate, meizothrombin (fIIa(MZ)). FIIa(MZ) has distinct catalytic properties relative to fIIa, including diminished fibrinogen cleavage and increased protein C activation.

View Article and Find Full Text PDF

Background And Objectives: Rivaroxaban, a new oral anti-Xa agent, has been approved for use without routine monitoring, but the lack of a predictable drug level measurement may hinder the management of anticoagulated patients. The aims of the project were to correlate a Anti-Factor Xa assay using commercial calibrators and controls (Riva Activity) with serum drug levels analyzed by HPLC-MS/MS (Riva MS) in patients currently receiving rivaroxaban, and secondly, to correlate the PT/PTT, thrombin generation (CAT assay) and Thromboelastograph (TEG) with the Riva activity and Riva MS.

Methods: Recruited patients receiving rivaroxaban prospectively had a total of 3 blood samples taken at least 2 hours apart.

View Article and Find Full Text PDF

Background: Extracellular histones exert part of their prothrombotic activity through the stimulation of blood cells. Besides platelets, histones can bind to red blood cells (RBCs), which are important contributors to thrombogenesis, but little is known about the functional consequences of this interaction.

Objectives: To evaluate the effect of histones on the procoagulant potential of human RBCs with particular regard to the expression of surface phosphatidylserine (PS).

View Article and Find Full Text PDF

Activated protein C (PC) is an anticoagulant involved in the interactions between the coagulation and immune systems. Activated PC has broad anti-inflammatory effects that are mediated through its ability to modulate leukocyte function and confer vascular barrier protection. We investigated the influence of activated PC on the pathogenesis of experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis.

View Article and Find Full Text PDF

We previously reported that extracellular histones are major mediators of death in sepsis. Infusion of extracellular histones leads to increased cytokine levels. Histones activate TLR2 and TLR4 in a process that is enhanced by binding to DNA.

View Article and Find Full Text PDF

Background: Histones are basic proteins that contribute to cell injury and tissue damage when released into the extracellular space. They have been attributed a prothrombotic activity, because their injection into mice induces diffuse microvascular thrombosis. The protein C-thrombomodulin (TM) system is a fundamental regulator of coagulation, particularly in the microvasculature, and its activity can be differentially influenced by interaction with several cationic proteins.

View Article and Find Full Text PDF

The release of histones from dying cells is associated with microvascular thrombosis and, because histones activate platelets, this could represent a possible pathogenic mechanism. In the present study, we assessed the influence of histones on the procoagulant potential of human platelets in platelet-rich plasma (PRP) and in purified systems. Histones dose-dependently enhanced thrombin generation in PRP in the absence of any trigger, as evaluated by calibrated automated thrombinography regardless of whether the contact phase was inhibited.

View Article and Find Full Text PDF

Thrombin is a positive mediator of thrombus formation through the proteolytic activation of protease-activated receptors (PARs), fibrinogen, factor XI (fXI), and other substrates, and a negative regulator through activation of protein C, a natural anticoagulant with anti-inflammatory/cytoprotective properties. Protease-engineering studies have established that 2 active-site substitutions, W215A and E217A (fII(WE)), result in dramatically reduced catalytic efficiency with procoagulant substrates while largely preserving thrombomodulin (TM)-dependent protein C activation. To explore the hypothesis that a prothrombin variant favoring antithrombotic pathways would be compatible with development but limit inflammatory processes in vivo, we generated mice carrying the fII(WE) mutations within the endogenous prothrombin gene.

View Article and Find Full Text PDF

Protease-activated receptor (PAR) signaling is closely linked to the cellular activation of the pro- and anticoagulant pathways. The endothelial protein C receptor (EPCR) is crucial for signaling by activated protein C through PAR1, but EPCR may have additional roles by interacting with the 4-carboxyglutamic acid domains of procoagulant coagulation factors VII (FVII) and X (FX). Here we show that soluble EPCR regulates the interaction of FX with human or mouse tissue factor (TF)-FVIIa complexes.

View Article and Find Full Text PDF

The mechanisms of vascular control of thrombotic events remain unclear. The vasculature possesses essential anticoagulant factors that regulate coagulation. Because the endothelium-to-blood ratios are much higher in the microcirculation, it is likely that stasis contributes to thrombotic risk, due in large part to failure to rapidly access the microcirculation and to gain access to this highly anticoagulant environment.

View Article and Find Full Text PDF

Hyperinflammatory responses can lead to a variety of diseases, including sepsis. We now report that extracellular histones released in response to inflammatory challenge contribute to endothelial dysfunction, organ failure and death during sepsis. They can be targeted pharmacologically by antibody to histone or by activated protein C (APC).

View Article and Find Full Text PDF

Background: The hemolytic-uremic syndrome consists of the triad of microangiopathic hemolytic anemia, thrombocytopenia, and renal failure. The common form of the syndrome is triggered by infection with Shiga toxin-producing bacteria and has a favorable outcome. The less common form of the syndrome, called atypical hemolytic-uremic syndrome, accounts for about 10% of cases, and patients with this form of the syndrome have a poor prognosis.

View Article and Find Full Text PDF

Background: Activated protein C (APC) protects the host from severe sepsis. Endothelial protein C receptor (EPCR) is expressed on both hematopoietic leukocytes and non-hematopoietic endothelium, and plays a key role in protein C activation.

Objectives: We explore the influence of EPCR deletion on the responses to lipopolysaccharide (LPS) and then determine whether the observed differences are due to loss of hematopoietic or non-hematopoietic EPCR.

View Article and Find Full Text PDF

Endothelial protein C receptor (EPCR) plays an important role in the protein C anticoagulation pathway. Previously, we have reported that EPCR can be shed from the cell surface, and that this is mediated by an unidentified metalloproteinase. In this study, we demonstrate that tumor necrosis factor-alpha converting enzyme/ADAM17 (TACE) is responsible for EPCR shedding.

View Article and Find Full Text PDF

Recent studies have shown that endothelial protein C receptor (EPCR) polymorphisms and soluble EPCR levels are associated with thrombotic diseases. It is unknown whether membrane EPCR (mEPCR) heterozygosity and/or physiologically elevated sEPCR levels directly impact the hemostatic balance and the outcome of endotoxemia. In these studies, thrombin infusion experiments revealed that EPCR heterozygosity (Procr+/-) impaired protein C activation by approximately 30%.

View Article and Find Full Text PDF

The endothelial cell protein C receptor (EPCR) plays an important role in regulating blood coagulation and in activated protein C-mediated anti-inflammatory and antiapoptotic processes. Recent studies reported that there are polymorphisms in the human EPCR gene. One of the polymorphisms (haplotype A3) results in substitution of the Ser at residue 219 with Gly in the transmembrane domain.

View Article and Find Full Text PDF

Previous studies have shown that blocking endothelial protein C receptor (EPCR)-protein C interaction results in about an 88% decrease in circulating activated protein C (APC) levels generated in response to thrombin infusion and exacerbates the response to Escherichia coli. To determine whether higher levels of EPCR expression on endothelial cells might further enhance the activation of protein C and protect the host during septicemia, we generated a transgenic mouse (Tie2-EPCR) line which placed the expression of EPCR under the control of the Tie2 promoter. The mice express abundant EPCR on endothelial cells not only on large vessels, but also on capillaries where EPCR is generally low.

View Article and Find Full Text PDF

The endothelial cell protein C receptor (EPCR) augments protein C activation by the thrombin-thrombomodulin complex. Deletion of the EPCR gene (Procr) in mice leads to embryonic lethality before embryonic day 10 (E10.0).

View Article and Find Full Text PDF

Activated protein C (APC) anticoagulant activity and the ability to be inhibited by auto-antibodies associated with thrombosis are strongly augmented by the presence of phosphatidylethanolamine (PE) and phospholipid oxidation. beta(2)-glycoprotein I (beta(2)-GPI) is a major antigen for antiphospholipid antibodies present in patients with the antiphospholipid syndrome. We therefore investigated whether anti-beta(2)-GPI monoclonal antibodies (mAbs) could inhibit APC with similar membrane specificity.

View Article and Find Full Text PDF

Activated protein C (APC), a natural anticoagulant protease, can trigger cellular responses via protease-activated receptor-1 (PAR1), a G protein-coupled receptor for thrombin. Whether this phenomenon contributes to the physiological effects of APC is unknown. Toward answering this question, we compared the kinetics of PAR1 cleavage on endothelial cells by APC versus thrombin.

View Article and Find Full Text PDF

Objective: To investigate the Factor V Leiden mutation associated with activated protein C resistance (APCR) in Chinese.

Methods: Twenty-eight normal individuals and 18 patients with thrombotic diseases were studied by APC-APTT, PCR followed by Mnl I restriction enzyme analysis, PCR-SSP, and DNA sequence analysis.

Results: In one normal individual of Chinese origin, the APC sensitivity ratio (APC-SR) was found to be significantly lower than that in other normal controls.

View Article and Find Full Text PDF

The endothelial cell protein C receptor (EPCR) is a type 1 transmembrane protein found primarily on endothelium that binds both protein C and activated protein C with similar affinity. EPCR augments the activation of protein C by the thrombin-thrombomodulin complex. To determine the physiological importance of EPCR, we generated EPCR-deficient mice by homologous targeting in embryonic stem cells.

View Article and Find Full Text PDF