An application of mechanical energy was explored as a new non-thermal method to drive H emission from undoped sodium alanate at room temperature. It was found that mild rubbing of NaAlH pellets under vacuum led to intensive and almost instantaneous gas emission. The dominating species in the emitted gases was H (>99%).
View Article and Find Full Text PDFThe generation and manipulation of small aqueous droplets is an important issue for nano- and biotechnology, particularly, when using microfluidic devices. The production of very small droplets has been frequently carried out by applying intense local electric fields to the fluid, which requires power supplies and metallic electrodes. This procedure complicates the device and reduces its versatility.
View Article and Find Full Text PDFIn the last decades, a broad family of hydrides have attracted attention as prospective hydrogen storage materials of very high gravimetric and volumetric capacity, fast H -sorption kinetics, environmental friendliness and economical affordability. However, constraints due to their high activation energies of the different H -sorption steps and the Gibbs energy of their reaction with H has led to the need of high thermal energy to drive H uptake and release. High heat leads to significant degradation effects (recrystallization, phase segregation, nanoparticles agglomeration…) of the hydrides.
View Article and Find Full Text PDF