Publications by authors named "Esmee Hoefsmit"

Background: Continuous combination of MAPK pathway inhibition (MAPKi) and anti-programmed death-(ligand) 1 (PD-(L)1) showed high response rates, but only limited improvement in progression-free survival (PFS) at the cost of a high frequency of treatment-related adverse events (TRAE) in patients with BRAF-mutated melanoma. Short-term MAPKi induces T-cell infiltration in patients and is synergistic with anti-programmed death-1 (PD-1) in a preclinical melanoma mouse model. The aim of this phase 2b trial was to identify an optimal regimen of short-term MAPKi with dabrafenib plus trametinib in combination with pembrolizumab.

View Article and Find Full Text PDF

Unlabelled: The response rates upon neoadjuvant immune checkpoint blockade (ICB) in stage III melanoma are higher as compared with stage IV disease. Given that successful ICB depends on systemic immune response, we hypothesized that systemic immune suppression might be a mechanism responsible for lower response rates in late-stage disease, and also potentially with disease recurrence in early-stage disease. Plasma and serum samples of cohorts of patients with melanoma were analyzed for circulating proteins using mass spectrometry proteomic profiling and Olink proteomic assay.

View Article and Find Full Text PDF

Glucose limitation and increased lactic acid levels are consequences of the elevated glycolytic activity of tumor cells, and constitute a metabolic barrier for the function of tumor infiltrating effector immune cells. The immune-suppressive functions of regulatory T cells (Tregs) are unobstructed in lactic-acid rich environments. However, the impact of lactic acid on the induction of Tregs remains unknown.

View Article and Find Full Text PDF

Cross-presentation of tumor antigens by dendritic cells (DC) is crucial to prime, stimulate and restimulate CD8+ T cells. This process is important in initiating and maintaining an antitumor response. Here, we show that the presence of conventional type 1 DCs (cDC1), a DC subtype that excels in cross-presentation, in the tumor correlated with response to neoadjuvant immune checkpoint blockade (ICB) in melanoma.

View Article and Find Full Text PDF

Background: For effective tumor elimination, cytotoxic CD8 T cells must recognize tumor-derived antigens presented on class I major histocompatibility complex (MHC-I). Despite a general association between the expression of immunogenic antigens, typically neoantigens, and response to immunotherapy, the majority of patients lack strong endogenous responses to most putative neoantigens due to mechanisms that are not well understood. Cytotoxic CD8 T-cell responses are induced by dendritic cells (DCs) cross-presenting tumor-derived peptides on MHC-I.

View Article and Find Full Text PDF

Tumor escape mechanisms for immunotherapy include deficiencies in antigen presentation, diminishing adaptive CD8 T cell antitumor activity. Although innate natural killer (NK) cells are triggered by loss of MHC class I, their response is often inadequate. To increase tumor susceptibility to both innate and adaptive immune elimination, we performed parallel genome-wide CRISPR-Cas9 knockout screens under NK and CD8 T cell pressure.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the differences in immune response to immune checkpoint blockade (ICB) between cutaneous melanoma (CM) and uveal melanoma (UM) patients, focusing on metastases in the liver.
  • Researchers analyzed liver samples from both CM and UM patients, using various genomic, transcriptional, and protein-level techniques.
  • Findings revealed that while CM and UM share a melanoma lineage, they significantly differ in mutation profiles and immune markers, with CM showing higher PD-L1 expression and UM demonstrating a higher ratio of exhausted CD8 T cells, suggesting distinct mechanisms behind their responses to ICB.
View Article and Find Full Text PDF

Despite advances in immuno-oncology, the relationship between tumor genotypes and response to immunotherapy remains poorly understood, particularly in high-grade serous tubo-ovarian carcinomas (HGSC). We developed a series of mouse models that carry genotypes of human HGSCs and grow in syngeneic immunocompetent hosts to address this gap. We transformed murine-fallopian tube epithelial cells to phenocopy homologous recombination-deficient tumors through a combined loss of and overexpression of and , which was contrasted with an identical model carrying wild-type .

View Article and Find Full Text PDF

Unprecedented successes regarding cancer immunotherapy have been achieved, in which therapeutic agents are used to target immune cells rather than cancer cells. The most effective immunotherapy to date is the group of immune checkpoint inhibitors (CPI), targeting, for example, cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) or programmed cell death protein (PD-1). TThe combination of these therapies (anti-PD-1 with anti-CTLA-4) induces high response rates, and seem to be increased further when applied in early-stage disease.

View Article and Find Full Text PDF

Cancer immunotherapies utilizing immune checkpoint inhibitors (ICI) have demonstrated durable efficacy in a proportion of patients with advanced/metastatic cancers. More recently, the use of ICIs for the adjuvant treatment of patients with surgically resectable melanoma has also demonstrated efficacy by improving relapse-free survival and in the case of ipilimumab (anti-CTLA-4) also improving overall survival. Although promising, the effective scheduling of surgery and immunotherapy and its duration is not well elucidated.

View Article and Find Full Text PDF

Background: Activated eosinophils cause major pathology in stable and exacerbating asthma; however, they can also display protective properties like an extracellular antiviral activity. Initial murine studies led us to further explore a potential intracellular antiviral activity by eosinophils.

Methods: To follow eosinophil-virus interaction, respiratory syncytial virus (RSV) and influenza virus were labeled with a fluorescent lipophilic dye (DiD).

View Article and Find Full Text PDF