The hexanucleotide (G4C2)-repeat expansion in the C9ORF72 gene is the most common pathogenic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). This repeat expansion can be translated into dipeptide repeat proteins (DPRs), and distribution of the poly-GR DPR correlates with neurodegeneration in postmortem C9FTD/ALS brains. Here, we assessed poly-GR toxicity in zebrafish embryos, using an annexin A5-based fluorescent transgenic line (secA5) that allows for detection and quantification of apoptosis in vivo.
View Article and Find Full Text PDFCGG repeat expansions within the premutation range (55-200) of the gene can lead to Fragile X-associated tremor/ataxia syndrome and Fragile X-associated neuropsychiatric disorders. These CGG repeats are translated into a toxic polyglycine-containing protein, FMRpolyG. Pathology of Fragile X-associated tremor/ataxia syndrome and Fragile X-associated neuropsychiatric disorders comprises FMRpolyG- and p62-positive intranuclear inclusions.
View Article and Find Full Text PDFFragile X-associated tremor/ataxia syndrome (FXTAS) is a rare neurodegenerative disorder caused by a 55-200 CGG repeat expansion in the 5' untranslated region of the Fragile X Mental Retardation 1 () gene. FXTAS is characterized by progressive cerebellar ataxia, Parkinsonism, intention tremors and cognitive decline. The main neuropathological hallmark of FXTAS is the presence of ubiquitin-positive intranuclear inclusions in neurons and astrocytes throughout the brain.
View Article and Find Full Text PDFFragile X syndrome (FXS) is the most common monogenetic cause of intellectual disability and autism spectrum disorders. Mostly, FXS is caused by transcriptional silencing of the FMR1 gene due to a repeat expansion in the 5' UTR, and consequently lack of the protein product FMRP. However, in rare cases FXS is caused by other types of variants in the FMR1 gene.
View Article and Find Full Text PDF