Publications by authors named "Esmat Sodagar"

Osteomyelitis is a limb- and life-threatening orthopedic infection predominantly caused by biofilms. Bone infections are extremely challenging to treat clinically. Therefore, we have been designing, synthesizing, and testing novel antibiotic conjugates to target bone infections.

View Article and Find Full Text PDF

Studies of the potential role of bisphosphonates in dentistry date back to physical chemical research in the 1960s, and the genesis of the discovery of bisphosphonate pharmacology in part can be linked to some of this work. Since that time, parallel research on the effects of bisphosphonates on bone metabolism continued, while efforts in the dental field included studies of bisphosphonate effects on dental calculus, caries, and alveolar bone loss. While some utility of this drug class in the dental field was identified, leading to their experimental use in various dentrifice formulations and in some dental applications clinically, adverse effects of bisphosphonates in the jaws have also received attention.

View Article and Find Full Text PDF

Advances in the design of potential bone-selective drugs for the treatment of various bone-related diseases are creating exciting new directions for multiple unmet medical needs. For bone-related cancers, off-target/non-bone toxicities with current drugs represent a significant barrier to the quality of life of affected patients. For bone infections and osteomyelitis, bacterial biofilms on infected bones limit the efficacy of antibiotics because it is hard to access the bacteria with current approaches.

View Article and Find Full Text PDF

A visible-light, single-electron-transfer (SET), photoredox cross-coupling for the synthesis of α-alkoxyketones has been developed. In this method, various aliphatic and aromatic acyl chlorides were successfully coupled with structurally diverse potassium alkoxymethyltrifluoroborates, producing the corresponding α-alkoxyketones with high yields. In this operationally simple and mild cross-coupling protocol, the desired ketones are obtained in one step from bench stable starting materials by a bond connection that is unique to both alkylboron chemistry and photoredox/Ni catalysis.

View Article and Find Full Text PDF

Nanosized sulfated titania was prepared by a sol-gel hydrothermal process. X-ray diffraction (XRD), transmission electron, and scanning electron micrographs (TEM and SEM), FT-IR specific surface area, and BET N(2) adsorption were employed to characterize the properties of the synthesized sulfated TiO(2). The results indicate that both anatase and rutile TiO(2) are obtainable.

View Article and Find Full Text PDF