Elucidating local dynamics of protein aggregation is crucial for understanding the mechanistic details of protein amyloidogenesis. Herein, we studied the residue-specific dynamics and local environmental changes of Aβ40 along the course of aggregation by using para-cyanophenylalanine (Phe ) as a fluorescent and vibrational probe. Our results show that the Phe residues introduced at various positions all exhibited an immediate decay of fluorescence intensity, indicating a relatively synergistic process in early oligomer formation.
View Article and Find Full Text PDFInteractions of amyloid-β (Aβ) peptides and cellular membranes are proposed to be closely related with Aβ neurotoxicity in Alzheimer's disease. In this study, we systematically investigated the effect of the N-terminal hydrophilic region of Aβ40 on its amyloidogenesis and interaction with supported phospholipid bilayer. Our results show that modulation of the charge properties of the dynamic N-terminal region dramatically influences the aggregation properties of Aβ.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
September 2017
The process of amyloid-β (Aβ) amyloid formation is pathologically linked to Alzheimer's disease (AD). The identification of Aβ amyloids and intermediates that are crucial players in the pathology of AD is critical for exploring the underlying mechanism of Aβ aggregation and the diagnosis of the disease. Herein, we performed a gold nanoparticle (AuNP)-based study to detect the formation of Aβ amyloid fibrils and oligomers.
View Article and Find Full Text PDFUnderstanding of the mechanistic progess of amyloid-β peptide (Aβ) aggregation is critical for elucidating the underlying pathogenesis of Alzheimer's disease (AD). Herein, we report for the first time the effects of two cholesterol derivatives, negatively charged cholesterol sulfate (cholesterol-SO4) and positively charged 3β-[N-(dimethylaminoethane)carbamoyl]-cholesterol (DC-cholesterol), on the fibrillization of Aβ40. Our results demonstrate that both of the nonvesicular forms of cholesterol-SO4 and DC-cholesterol moderately accelerate the aggregation rate of Aβ40.
View Article and Find Full Text PDF