Functional perovskite solar cells can be made by using a simple, inexpensive and stable soluble tetra-n-butyl-substituted copper phthalocyanine (CuBuPc) as a hole transporter. In the present study, TiO/reduced graphene oxide (T/RGO) hybrids were synthesized via an in situ solvothermal process and used as electron acceptor/transport mediators in mesoscopic perovskite solar cells based on soluble CuBuPc as a hole transporter and on graphene oxide (GO) as a buffer layer. The impact of the RGO content on the optoelectronic properties of T/RGO hybrids and on the solar cell performance was studied, suggesting improved electron transport characteristics and photovoltaic parameters.
View Article and Find Full Text PDFA NiO -graphene oxide (NiO -GO) hybrid has been prepared by a simple solution-processed method and was used as hole-extraction material in perovskite solar cells with either gold or carbon as back contact electrode. The impact of GO content on the optoelectronic behavior of NiO and the photovoltaic performance of the fabricated devices has been studied. Thus, GO incorporation showed a significant improvement in the performance of NiO -based devices.
View Article and Find Full Text PDFPerovskite solar cells with an inverted p-i-n architecture were constructed under ambient conditions by employing materials of lower cost than standard cells. Thus, graphene oxide was used as a hole transporting material and Li-modified graphene oxide as an electron transporting material, while Al was used as a counter electrode. A maximum solar conversion efficiency of 10.
View Article and Find Full Text PDF