The self-assembly of phenylalanine (F)-based peptides is a critical area of research with potential implications for the development of advanced biomaterials and technologies. Previous studies indicate that homo-oligopeptides with F-X residues (X = 1 to 6) can self-assemble into diverse nano-microstructures, but the role of oligopeptide chain length on this process remains unclear. This review investigates the role of F-X chain length on self-assembly processes and morphologies, considering the effect of incubation conditions and the capping group at the N and/or C terminals.
View Article and Find Full Text PDFThere is a need to develop robust computational models for mesoscale simulation of the structure of peptides over large length scales toward the discovery of novel peptides for medical applications to address the issues of peptide aggregation, enzymatic degradation, and short half-life. The primary objective was to predict the structure and conformation of peptides whose native structures are not known. This work presents a new model for computation of interaction parameters between the beads in coarse-grained dissipative particle dynamics (DPD) simulation that is properly calibrated for amino acids, supports compressibility requirement of water molecules, and accounts for subtle differences in the structure of amino acids and the charge in the side chain of charged amino acids.
View Article and Find Full Text PDFThere is a need to develop novel cytocompatible hydrogels for cell encapsulation and delivery in regenerative medicine. The objective of this work was to synthesize isocyanato ethyl methacryloyl-functionalized sericin and determine its material properties as a natural hydrogel for the encapsulation and delivery of human mesenchymal stem cells (MSCs) in regenerative medicine. Sericin extracted from silk cocoons was reacted with 2-isocyanatoethyl methacrylate (IEM) or methacrylic anhydride (MA) to produce sericin urethane methacryloyl (SerAte-UM) or sericin methacryloyl (SerAte-M, control) biopolymers, respectively.
View Article and Find Full Text PDFThis Special Issue celebrates many outstanding quality papers published in over the past six years since its first issue was published in 2015 [...
View Article and Find Full Text PDFPolymers, due to their high molecular weight, tunable architecture, functionality, and buffering effect for endosomal escape, possess unique properties as a carrier or prophylactic agent in preventing pandemic outbreak of new viruses. Polymers are used as a carrier to reduce the minimum required dose, bioavailability, and therapeutic effectiveness of antiviral agents. Polymers are also used as multifunctional nanomaterials to, directly or indirectly, inhibit viral infections.
View Article and Find Full Text PDFConventional microcarriers used for expansion of human mesenchymal stem cells (hMSCs) require detachment and separation of the cells from the carrier prior to use in clinical applications for regeneration of articular cartilage, and the carrier can cause undesirable phenotypic changes in the expanded cells. This work describes a novel approach to expand hMSCs on biomimetic carriers based on adult or fetal decellularized bovine articular cartilage that supports tissue regeneration without the need to detach the expanded cells from the carrier. In this approach, the fetal or adult bovine articular cartilage was minced, decellularized, freeze-dried, ground, and sieved to produce articular cartilage microgels (CMGs) in a specified size range.
View Article and Find Full Text PDFCancer stem cells (CSCs) are a subpopulation of cells that can initiate, self-renew, and sustain tumor growth. CSCs are responsible for tumor metastasis, recurrence, and drug resistance in cancer therapy. CSCs reside within a niche maintained by multiple unique factors in the microenvironment.
View Article and Find Full Text PDFRegeneration of bone tissue requires novel load bearing, biocompatible materials that support adhesion, spreading, proliferation, differentiation, mineralization, ECM production and maturation of bone-forming cells. Polycaprolactone (PCL) has many advantages as a biomaterial for scaffold production including tuneable biodegradation, relatively high mechanical toughness at physiological temperature. Electrospinning produces nanofibrous porous matrices that mimic many properties of natural tissue extracellular matrix with regard to surface area, porosity and fibre alignment.
View Article and Find Full Text PDFExpert Rev Anti Infect Ther
January 2021
Introduction: Emergence of antibiotic resistance in bacteria is a complicated issue, especially when treating infectious immunodeficiency related diseases. In recent years, when compared to bulk materials, nanomaterials (NMs) with specific antibacterial activities have played a novel role in treating bacterial infections. Among NMs, quantum dots (QDs), specifically carbon containing QDs including graphene oxide QD (GOQD), graphene QD (GQD), and carbon QD (CQD), have demonstrated bacteriostatic and bactericidal activities via photodynamic (PD) effects against antibiotic resistant bacteria under a certain wavelength of light.
View Article and Find Full Text PDFNanogels, or nanostructured hydrogels, are one of the most interesting materials in biomedical engineering. Nanogels are widely used in medical applications, such as in cancer therapy, targeted delivery of proteins, genes and DNAs, and scaffolds in tissue regeneration. One salient feature of nanogels is their tunable responsiveness to external stimuli.
View Article and Find Full Text PDFOver the last few decades, mesenchymal stem cells-derived exosomes (MSCs-Ex) have attracted a lot of attention as a therapeutic tool in regenerative medicine. Exosomes are extracellular vehicles (EVs) that play important roles in cell-cell communication through various processes such as stress response, senescence, angiogenesis, and cell differentiation. Success in the field of regenerative medicine sparked exploration of the potential use of exosomes as key therapeutic effectors of MSCs to promote tissue regeneration.
View Article and Find Full Text PDFGiven the great demand for biopolymer and protein-based products from renewable resources, synthesis of a keratin-based hydrogel is presented herein. In this work, a novel hydrogel of poly(γ-glutamic acid) (γ-PGA) and keratin was synthesized through facile EDC·HCl/HOBt chemistry. Since keratin main chain is rich in amino side groups, carboxyl groups in γ-PGA were crosslinked with multi terminated amine groups in keratin.
View Article and Find Full Text PDFThe objective of this work was to engineer self-assembled nanoparticles (NPs) for on-demand release of bone morphogenetic protein-2 (BMP2) and vascular endothelial growth factor (VEGF) in response to enzymes secreted by the migrating human mesenchymal stem cells (hMSCs) and human endothelial colony forming cells (ECFCs) to induce osteogenesis and vasculogenesis. Gene expression profiling experiments revealed that hMSCs and ECFCs, encapsulated in osteogenic/vasculogenic hydrogels, expressed considerable levels of plasminogen, urokinase plasminogen activator and its receptor uPAR, and tissue plasminogen activator. Therefore, the plasmin-cleavable lysine-phenylalanine-lysine-threonine (KFKT) was used to generate enzymatically cleavable NPs.
View Article and Find Full Text PDFResveratrol is a small molecule produced by various plants with a remarkable range of beneficial functions in animals. One of these is stimulating signaling pathways in adipose tissue that protect against obesity. Unfortunately, resveratrol suffers from poor bioavailability that inhibits its accumulation in target tissues, including fat, thus hindering the realization of its therapeutic potential.
View Article and Find Full Text PDFProtein-based biopolymers derived from natural tissues possess a hierarchical structure in their native state. Strongly solvating, reducing and stabilizing agents, as well as heat, pressure, and enzymes are used to isolate protein-based biopolymers from their natural tissue, solubilize them in aqueous solution and convert them into injectable or preformed hydrogels for applications in tissue engineering and regenerative medicine. This review aims to highlight the need to investigate the nano-/micro-structure of hydrogels derived from the extracellular matrix proteins of natural tissues.
View Article and Find Full Text PDFThe objective of this work was to fabricate a rigid, resorbable and osteoconductive scaffold by mimicking the hierarchical structure of the cortical bone. Aligned peptide-functionalize nanofiber microsheets were generated with calcium phosphate (CaP) content similar to that of the natural cortical bone. Next, the CaP-rich fibrous microsheets were wrapped around a microneedle to form a laminated microtube mimicking the structure of an osteon.
View Article and Find Full Text PDFNowadays, polymer reaction engineers seek robust and effective tools to synthesize complex macromolecules with well-defined and desirable microstructural and architectural characteristics. Over the past few decades, several promising approaches, such as controlled living (co)polymerization systems and chain-shuttling reactions have been proposed and widely applied to synthesize rather complex macromolecules with controlled monomer sequences. Despite the unique potential of the newly developed techniques, tailor-making the microstructure of macromolecules by suggesting the most appropriate polymerization recipe still remains a very challenging task.
View Article and Find Full Text PDFMillions of people every year develop scars in response to skin injuries after surgery, trauma, or burns with significant undesired physical and psychological effects. This review provides an update on engineering strategies for scar-free wound healing and discusses the role of different cell types, growth factors, cytokines, and extracellular components in regenerative wound healing. The use of pro-regenerative matrices combined with engineered cells with less intrinsic potential for fibrogenesis is a promising strategy for achieving scar-free skin tissue regeneration.
View Article and Find Full Text PDFA green and simple process for preparing the polyethylene glycol passivated fluorescent carbon dots (CDs-PEG) have been studied by a microwave pyrolysis method, using gelatin and PEG as starting materials. This method is very effective for development of carbon-based quantum dots from gelatin with high quantum yield (QY). The synthesized CDs-PEG were found to emit blue photoluminescence (PL) with a maximum QY of 34%.
View Article and Find Full Text PDFThe higher regenerative capacity of fetal articular cartilage compared with the adult is rooted in differences in cell density and matrix composition. We hypothesized that the zonal organization of articular cartilage can be engineered by encapsulation of mesenchymal stem cells in a single superficial zone-like matrix followed by sequential addition of zone-specific growth factors within the matrix, similar to the process of fetal cartilage development. The results demonstrate that the zonal organization of articular cartilage can potentially be regenerated using an injectable, monolayer cell-laden hydrogel with sequential release of growth factors.
View Article and Find Full Text PDFDespite the advantages of three-dimensional (3D) hydrogels for cell culture over traditional 2D plates, their clinical application is limited by inability to recapitulate the micro-architecture of complex tissues. Micropatterning can be employed to modify the homogenous micro-architecture of hydrogels. Three techniques for cell encapsulation in 3D micropatterned gels are described.
View Article and Find Full Text PDFA combination of elastic poly(butylene succinate-co-ethylene terephthalate) and rigid nano-hydroxyapatite were used to prepare an in-situ synthesized nanocomposite mimicing bone structure. The microstructure, morphology, and dispersion of nanoparticles in the nanocomposites were studied using proton nuclear magnetic resonance ( HNMR), scanning electron microscope (SEM), and transmission electron microscopy (TEM), respectively. Then, electrospinning method was used to produce nanofiber matrix with lowest fiber diameter.
View Article and Find Full Text PDFThe objective of this work was to investigate the effect of devitalized human mesenchymal stem cells (hMSCs) and endothelial colony-forming cells (ECFCs) seeded on mineralized nanofiber microsheets on protein release, osteogenesis, vasculogenesis, and macrophage polarization. Calcium phosphate nanocrystals were grown on the surface of aligned, functionalized nanofiber microsheets. The microsheets were seeded with hMSCs, ECFCs, or a mixture of hMSCs+ECFCs, cultured for cell attachment, differentiated to the osteogenic or vasculogenic lineage, and devitalized by lyophilization.
View Article and Find Full Text PDFEngineering bone tissue requires the generation of a highly organized vasculature. Cellular behavior is affected by the respective niche. Directing cellular behavior and differentiation for creating mineralized regions surrounded by vasculature can be achieved by controlling the pattern of osteogenic and angiogenic niches.
View Article and Find Full Text PDF