Engineered cementitious composites (ECCs) are a special class of ultra-ductile fiber-reinforced cementitious composites containing a significant amount of short discontinuous fibers. The distinctive tensile strain-hardening behavior of ECCs is the result of a systematic design based on the micromechanics of the fiber, matrix, and fiber-matrix interface. However, ECCs require extensive cement content, which is inconsistent with the goal of sustainable and green building materials.
View Article and Find Full Text PDFThis paper presents results from experimental work on mechanical properties of geopolymer concrete, mortar and paste prepared using fly ash and blended slag. Compressive strength, splitting tensile strength and flexural strength tests were conducted on large sets of geopolymer and ordinary concrete, mortar and paste after exposure to elevated temperatures. From Thermogravimetric analyzer (TGA), X-ray diffraction (XRD), Scanning electron microscope (SEM) test results, the geopolymer exhibits excellent resistance to elevated temperature.
View Article and Find Full Text PDFFRP bars and steel strands are widely used in civil engineering. In this study, three different types of high-strength reinforcement materials, carbon fiber reinforced polymer (CFRP) bar, glass fiber reinforced polymer (GFRP) bar, and steel strand, were investigated for their interfacial bond performance with concrete. A total of 90 sets of specimens were conducted to analyze the effects of various parameters such as the diameter of reinforcement, bond length, the grade of concrete and stirrup on the bond strength and residual bond strength.
View Article and Find Full Text PDF