Publications by authors named "Esen Yonca Bassoy"

Background: Increased infiltration of T cells into ovarian tumors has been repeatedly shown to be predictive of enhanced patient survival. However, despite the evidence of an active immune response in ovarian cancer (OC), the frequency of responses to immune checkpoint blockade (ICB) therapy in OC is much lower than other cancer types. Recent studies have highlighted that deficiencies in the DNA damage response (DDR) can drive increased genomic instability and tumor immunogenicity, which leads to enhanced responses to ICB.

View Article and Find Full Text PDF

The immune system protects the host from a plethora of microorganisms and toxins through its unique ability to distinguish self from non-self. To perform this delicate but essential task, the immune system relies on two lines of defense. The innate immune system, which is by nature fast acting, represents the first line of defense.

View Article and Find Full Text PDF

The interleukin (IL)-36 cytokines include 3 agonists, IL-36α, IL-36β, and IL-36γ that bind to a common receptor composed of IL-36R and IL-1RAcP to stimulate inflammatory responses. IL-36Ra is a natural antagonist that binds to IL-36R, but does not recruit the co-receptor IL-1RAcP and does not stimulate any intracellular responses. The IL-36 cytokines are expressed predominantly by epithelial cells and act on a number of cells including immune cells, epithelial cells, and fibroblasts.

View Article and Find Full Text PDF

We have found that granzyme B (GB)-induced apoptosis also requires reactive oxygen species resulting from the alteration of mitochondrial complex I. How GB, which does not possess a mitochondrial targeting sequence, enter this organelle is unknown. We show that GB enters the mitochondria independently of the translocase of the outer mitochondrial membrane complex, but requires instead Sam50, the central subunit of the sorting and assembly machinery that integrates outer membrane β-barrel proteins.

View Article and Find Full Text PDF

Glioblastoma is a highly heterogeneous aggressive primary brain tumor, with the glioma stem-like cells (GSC) being more sensitive to cytotoxic lymphocyte-mediated killing than glioma differentiated cells (GDC). However, the mechanism behind this higher sensitivity is unclear. Here, we found that the mitochondrial morphology of GSCs modulates the ER-mitochondria contacts that regulate the surface expression of sialylated glycans and their recognition by cytotoxic T lymphocytes and natural killer cells.

View Article and Find Full Text PDF

Malignant gliomas are aggressive brain tumours with very poor prognosis. The majority of glioma cells are differentiated (glioma-differentiated cells: GDCs), whereas the smaller population (glioma-initiating cells, GICs) is undifferentiated and resistant to conventional therapies. Therefore, to better target this pool of heterogeneous cells, a combination of diverse therapeutic approaches is envisaged.

View Article and Find Full Text PDF

Glioblastoma multiforme, the most aggressive primary brain tumor, is maintained by a subpopulation of glioma cells with self-renewal properties that are able to recapitulate the entire tumor even after surgical resection or chemo-radiotherapy. This typifies the vast heterogeneity of this tumor with the two extremes represented on one end by the glioma stemlike cells (GSC) and on the other by the glioma differentiated cells (GDC). Interestingly, GSC are more sensitive to immune effector cells than the GDC counterpart.

View Article and Find Full Text PDF

In this study, we examined the possible roles of ceramide/sphingosine-1-phosphate and ceramide/glucosyleceramide signaling in docetaxel-induced apoptosis by examining expression levels of the glucosyleceramide synthase and sphingosine kinase-1 and ceramide synthase gene family. As confirmed by isobologram analysis, docetaxel in combination with agents that increase intracellular ceramide levels increased the cytotoxic and apoptotic effects of docetaxel synergistically. More importantly, RT-PCR results revealed that expression levels of glucosyleceramide synthase and sphingosine kinase-1 were downregulated and ceramide synthase genes were upregulated in response to docetaxel.

View Article and Find Full Text PDF

In this study, we aimed to show the synergistic apoptotic effects of imatinib/fludarabine combination in human K562 chronic myleloid leukemia (CML) cells. There was a significant increase in cytotoxicity of combination of imatinib and fludarabine as compared to any agent alone. On the other hand, combination of both agents induced apoptosis significantly as confirmed by increases in caspase-3 enzyme activity and decreases in mitochondrial membrane potential.

View Article and Find Full Text PDF