Pacific oysters face recurring outbreaks of Pacific Oyster Mortality Syndrome (POMS), a polymicrobial multifactorial disease. Although this interaction is increasingly understood, the role of epigenetics (e.g.
View Article and Find Full Text PDFThe Pacific oyster lives in microbe-rich marine coastal systems subjected to rapid environmental changes. It harbours a diversified and fluctuating microbiota that cohabits with immune cells expressing a diversified immune gene repertoire. In the early stages of oyster development, just after fertilization, the microbiota plays a key role in educating the immune system.
View Article and Find Full Text PDFBig defensins are two-domain antimicrobial peptides (AMPs) that have highly diversified in mollusks. -BigDefs are expressed by immune cells in the oyster , and their expression is dampened during the Pacific Oyster Mortality Syndrome (POMS), which evolves toward fatal bacteremia. We evaluated whether -BigDefs contribute to the control of oyster-associated microbial communities.
View Article and Find Full Text PDFWhole-genome sequencing is widely used to better understand the transmission dynamics, the evolution and the emergence of new variants of viral pathogens. This can bring crucial information to stakeholders for disease management. Unfortunately, aquatic virus genomes are usually difficult to characterize because most of these viruses cannot be easily propagated .
View Article and Find Full Text PDFBackground: The interaction of organisms with their surrounding microbial communities influences many biological processes, a notable example of which is the shaping of the immune system in early life. In the Pacific oyster, Crassostrea gigas, the role of the environmental microbial community on immune system maturation - and, importantly, protection from infectious disease - is still an open question.
Results: Here, we demonstrate that early life microbial exposure durably improves oyster survival when challenged with the pathogen causing Pacific oyster mortality syndrome (POMS), both in the exposed generation and in the subsequent one.
Background: The impact of the microbiota on host fitness has so far mainly been demonstrated for the bacterial microbiome. We know much less about host-associated protist and viral communities, largely due to technical issues. However, all microorganisms within a microbiome potentially interact with each other as well as with the host and the environment, therefore likely affecting the host health.
View Article and Find Full Text PDFPacific Oyster Mortality Syndrome (POMS) affects oysters worldwide and causes important economic losses. Disease dynamic was recently deciphered and revealed a multiple and progressive infection caused by the OsHV-1 μVar, triggering an immunosuppression followed by microbiota destabilization and bacteraemia by opportunistic bacterial pathogens. However, it remains unknown if microbiota might participate to protect oysters against POMS, and if microbiota characteristics might be predictive of oyster mortalities.
View Article and Find Full Text PDFInfectious diseases are mostly explored using reductionist approaches despite repeated evidence showing them to be strongly influenced by numerous interacting host and environmental factors. Many diseases with a complex aetiology therefore remain misunderstood. By developing a holistic approach to tackle the complexity of interactions, we decipher the complex intra-host interactions underlying Pacific oyster mortality syndrome affecting juveniles of Crassostrea gigas, the main oyster species exploited worldwide.
View Article and Find Full Text PDFPrevious observations suggested that microbial communities contribute to coral health and the ecological resilience of coral reefs. However, most studies of coral microbiology focused on prokaryotes and the endosymbiotic algae . In contrast, knowledge concerning diversity of other protists is still lacking, possibly due to methodological constraints.
View Article and Find Full Text PDFSince 2008, juvenile Crassostrea gigas oysters have suffered from massive mortalities in European farming areas. This disease of complex etiology is still incompletely understood. Triggered by an elevated seawater temperature, it has been associated to infections by a herpes virus named OsHV-1 as well as pathogenic vibrios of the Splendidus clade.
View Article and Find Full Text PDFEmergence of polyphagous herbivorous insects entails significant adaptation to recognize, detoxify and digest a variety of host-plants. Despite of its biological and practical importance - since insects eat 20% of crops - no exhaustive analysis of gene repertoires required for adaptations in generalist insect herbivores has previously been performed. The noctuid moth Spodoptera frugiperda ranks as one of the world's worst agricultural pests.
View Article and Find Full Text PDFAn antimicrobial peptide (AMP) of the cecropin family was isolated by HPLC from plasma of the insect pest, Spodoptera frugiperda. Its molecular mass is 3910.9 Da as determined by mass spectrometry.
View Article and Find Full Text PDFCycle inhibiting factors (Cif) constitute a broad family of cyclomodulins present in bacterial pathogens of invertebrates and mammals. Cif proteins are thought to be type III effectors capable of arresting the cell cycle at G(2)/M phase transition in human cell lines. We report here the first direct functional analysis of Cif(Pl), from the entomopathogenic bacterium Photorhabdus luminescens, in its insect host.
View Article and Find Full Text PDF