Publications by authors named "Escote X"

Scope: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a global health issue with increasing prevalence. Polyphenols, such as grape seed proanthocyanidin extract (GSPE), are bioactive compounds present in plants and represent an interesting therapeutical approach for MASLD.

Methods And Results: This study questioned whether the timing of GSPE administration impacts liver diurnal metabolism and steatosis in a rat obesity model.

View Article and Find Full Text PDF
Article Synopsis
  • Eating foods high in polyphenols can help prevent long-term diseases, but we still need to learn more before making strong health recommendations!
  • Future research needs to focus on how safe polyphenols are, how they work together, and how they interact with our gut bacteria for better diets!
  • Scientists will also explore new ways to deliver polyphenols and understand how they can aid sports nutrition and recovery!
View Article and Find Full Text PDF

Background: Personalized nutrition (PN) has been proposed as a strategy to increase the effectiveness of dietary recommendations and ultimately improve health status.

Objectives: We aimed to assess whether including omics-based PN in an e-commerce tool improves dietary behavior and metabolic profile in general population.

Methods: A 21-wk parallel, single-blinded, randomized intervention involved 193 adults assigned to a control group following Mediterranean diet recommendations (n = 57, completers = 36), PN (n = 70, completers = 45), or personalized plan (PP, n = 68, completers = 53) integrating a behavioral change program with PN recommendations.

View Article and Find Full Text PDF

Understanding adipose metabolism is essential for addressing obesity and related health concerns. However, the ethical and scientific pressure to animal testing, aligning with the 3Rs, has triggered the implementation of diverse alternative models for analysing anomalies in adipose metabolism. In this review, we will address this issue from various perspectives.

View Article and Find Full Text PDF

: Histamine intolerance manifests when there is an imbalance between the production of histamine and the body's capacity to metabolise it. Within the gastrointestinal tract, diamine oxidase (DAO) plays a pivotal role in breaking down ingested histamine. Insufficient levels of DAO have been linked to various diseases affecting the respiratory, cardiovascular, nervous, muscular, and digestive systems; some of these symptoms are evidenced in fibromyalgia syndrome.

View Article and Find Full Text PDF

The gut microbiota contributes to the pathophysiology of non-alcoholic fatty liver disease (NAFLD). Histidine is a key energy source for the microbiota, scavenging it from the host. Its role in NAFLD is poorly known.

View Article and Find Full Text PDF

Histamine intolerance arises when there is a disparity between the production of histamine and the body's ability to break it down. In the gastrointestinal tract, the primary enzyme responsible for metabolizing ingested histamine is diamine oxidase (DAO), and a shortage of this enzyme has been associated with some diseases related to the respiratory, cardiovascular, nervous, muscular, and digestive systems, in addition to migraines. The treatment of migraines typically revolves around the utilization of both anti-migraine and anti-inflammatory drugs, but their interaction with DAO is not thoroughly understood.

View Article and Find Full Text PDF

Histamine intolerance occurs when there is an imbalance between histamine production and the capacity for histamine degradation. Diamine oxidase (DAO) is the main enzyme for the catabolism of ingested histamine degradation in the gastrointestinal tract and its deficiency has been linked to allergy-like symptoms. Psychostimulant drugs are commonly used to treat Attention Deficit Hyperactivity Disorder (ADHD), but their interaction with DAO is not well characterized.

View Article and Find Full Text PDF

Cognitive alterations are a common feature associated with many neurodegenerative diseases and are considered a major health concern worldwide. Cognitive alterations are triggered by microglia activation and oxidative/inflammatory processes in specific areas of the central nervous system. Consumption of bioactive compounds with antioxidative and anti-inflammatory effects, such as astaxanthin and spirulina, can help in preventing the development of these pathologies.

View Article and Find Full Text PDF

Scope: The beneficial health effects of (poly)phenol-rich foods such as red grapes mainly depend on both the type and concentration of (poly)phenols. Since fruit (poly)phenol content is influenced by growing conditions, the study examines the seasonal effects of red grapes (Vitis vinifera L.), grown under various cultivation conditions, on metabolic markers of adipose tissue in healthy rats.

View Article and Find Full Text PDF

Objective: Maresin 1 (MaR1) is a docosahexaenoic acid-derived proresolving lipid mediator with insulin-sensitizing and anti-steatosis properties. Here, we aim to unravel MaR1 actions on brown adipose tissue (BAT) activation and white adipose tissue (WAT) browning.

Methods: MaR1 actions were tested in cultured murine brown adipocytes and in human mesenchymal stem cells (hMSC)-derived adipocytes.

View Article and Find Full Text PDF

Personalized nutrition (PN) has gained much attention as a tool for empowerment of consumers to promote changes in dietary behavior, optimizing health status and preventing diet related diseases. Generalized implementation of PN faces different obstacles, one of the most relevant being metabolic characterization of the individual. Although omics technologies allow for assessment the dynamics of metabolism with unprecedented detail, its translatability as affordable and simple PN protocols is still difficult due to the complexity of metabolic regulation and to different technical and economical constrains.

View Article and Find Full Text PDF

Biomarkers are important in the assessment of health and disease, but are poorly studied in still healthy individuals with a (potential) different risk for metabolic disease. This study investigated, first, how single biomarkers and metabolic parameters, functional biomarker and metabolic parameter categories, and total biomarker and metabolic parameter profiles behave in young healthy female adults of different aerobic fitness and, second, how these biomarkers and metabolic parameters are affected by recent exercise in these healthy individuals. A total of 102 biomarkers and metabolic parameters were analysed in serum or plasma samples from 30 young, healthy, female adults divided into a high-fit (V̇O2peak ≥ 47 mL/kg/min, N = 15) and a low-fit (V̇O2peak ≤ 37 mL/kg/min, N = 15) group, at baseline and overnight after a single bout of exercise (60 min, 70% V̇O2peak).

View Article and Find Full Text PDF
Article Synopsis
  • The study examined the impact of whole-body deletion of a specific gene on brown adipose tissue activity and the risk of obesity and glucose regulation in mice, particularly on a high-fat diet.
  • Both knockout and wild type mice were tested with normal and high-fat diets, with assessments including body weight, insulin/glucose tolerance tests, and metabolic assays, revealing that knockout mice were more prone to obesity and insulin resistance.
  • Histological analysis showed enlarged fat cells in knockout mice on a high-fat diet, with reduced expression of key proteins involved in brown fat function, indicating impaired thermogenic capacity and responsiveness to cold.
View Article and Find Full Text PDF

Obesity is an epidemic disease worldwide, characterized by excessive fat accumulation associated with several metabolic perturbations, such as metabolic syndrome, insulin resistance, hypertension, and dyslipidemia. To improve this situation, a specific combination of metabolic cofactors (MC) (betaine, N-acetylcysteine, L-carnitine, and nicotinamide riboside) was assessed as a promising treatment in a high-fat diet (HFD) mouse model. Obese animals were distributed into two groups, orally treated with the vehicle (obese + vehicle) or with the combination of metabolic cofactors (obese + MC) for 4 weeks.

View Article and Find Full Text PDF

The gut is a selective barrier that not only allows the translocation of nutrients from food, but also microbe-derived metabolites to the systemic circulation that flows through the liver. Microbiota dysbiosis occurs when energy imbalances appear due to an unhealthy diet and a sedentary lifestyle. Dysbiosis has a critical impact on increasing intestinal permeability and epithelial barrier deterioration, contributing to bacterial and antigen translocation to the liver, triggering non-alcoholic fatty liver disease (NAFLD) progression.

View Article and Find Full Text PDF

Wastewater-based epidemiology has shown to be an efficient tool to track the circulation of SARS-CoV-2 in communities assisted by wastewater treatment plants (WWTPs). The challenge comes when this approach is employed to help Health authorities in their decision-making. Here, we describe the roadmap for the design and deployment of SARSAIGUA, the Catalan Surveillance Network of SARS-CoV-2 in Sewage.

View Article and Find Full Text PDF

Background & Aims: Growing evidence suggests that biomarker-guided dietary interventions can optimize response to treatment. In this study, we evaluated the efficacy of the PREVENTOMCIS platform-which uses metabolomic and genetic information to classify individuals into different 'metabolic clusters' and create personalized dietary plans-for improving health outcomes in subjects with overweight or obesity.

Methods: A 10-week parallel, double-blinded, randomized intervention was conducted in 100 adults (82 completers) aged 18-65 years, with body mass index ≥27 but <40 kg/m, who were allocated into either a personalized diet group (n = 49) or a control diet group (n = 51).

View Article and Find Full Text PDF

Consumption of grape seed proanthocyanidin extract (GSPE) has beneficial effects on the functionality of white adipose tissue (WAT). However, although WAT metabolism shows a clear diurnal rhythm, whether GSPE consumption could affect WAT rhythmicity in a time-dependent manner has not been studied. Ninety-six male Fischer rats were fed standard (STD, two groups) or cafeteria (CAF, four groups) diet for 9 weeks ( = 16 each group).

View Article and Find Full Text PDF

Although the human lifespan has increased in the past century owing to advances in medicine and lifestyle, the human healthspan has not kept up the same pace, especially in brain aging. Consequently, the role of preventive health interventions has become a crucial strategy, in particular, the identification of nutritional compounds that could alleviate the deleterious effects of aging. Among nutrients to cope with aging in special cognitive decline, the long-chain omega-3 polyunsaturated fatty acids (ω-3 LCPUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have emerged as very promising ones.

View Article and Find Full Text PDF

Aging usually comes associated with increased visceral fat accumulation, reaching even an obesity state, and favoring its associated comorbidities. One of the processes involved in aging is cellular senescence, which is highly dependent on the activity of the regulators of the cell cycle. The aim of this study was to analyze the changes in the expression of and in different adipose tissue depots during aging, as well as their regulation by obesity in mice.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) have emerged as the leading causes of chronic liver disease in the world. Obesity, insulin resistance, and dyslipidemia are multifactorial risk factors strongly associated with NAFLD/NASH. Here, a specific combination of metabolic cofactors (a multi-ingredient; MI) containing precursors of glutathione (GSH) and nicotinamide adenine dinucleotide (NAD) (betaine, N-acetyl-cysteine, L-carnitine and nicotinamide riboside) was evaluated as effective treatment for the NAFLD/NASH pathophysiology.

View Article and Find Full Text PDF

Maresin 1 (MaR1) is a DHA-derived pro-resolving lipid mediator. The present study aimed to characterize the ability of MaR1 to prevent the alterations induced by TNF-α on insulin actions in glucose uptake and Akt phosphorylation in cultured human adipocytes from overweight/obese subjects, as well as to investigate the effects of MaR1 acute and chronic administration on Akt phosphorylation in absence/presence of insulin in white adipose tissue (WAT) and skeletal muscle from lean and diet-induced obese (DIO) mice. MaR1 (0.

View Article and Find Full Text PDF