Atomic-scale imaging using scanning probe microscopy is a pivotal method for investigating the morphology and physico-chemical properties of nanostructured surfaces. Time resolution represents a significant limitation of this technique, as typical image acquisition times are on the order of several seconds or even a few minutes, while dynamic processes-such as surface restructuring or particle sintering, to be observed upon external stimuli such as changes in gas atmosphere or electrochemical potential-often occur within timescales shorter than a second. In this article, we present a fully redesigned field programmable gate array (FPGA)-based instrument that can be integrated into most commercially available standard scanning probe microscopes.
View Article and Find Full Text PDFThe interaction of catalyst particles with reducible support materials can drastically change their reactivity. On rutile TiO, processes like particle encapsulation (caused by the "strong metal-support interaction", SMSI) have long been known to depend on the initial reduction state of the oxide. Despite this knowledge, sample stoichiometry has rarely been controlled in a reproducible manner in the surface science literature.
View Article and Find Full Text PDFCarbon nitrides have recently come into focus for photo- and thermal catalysis, both as support materials for metal nanoparticles as well as photocatalysts themselves. While many approaches for the synthesis of three-dimensional carbon nitride materials are available, only top-down approaches by exfoliation of powders lead to thin-film flakes of this inherently two-dimensional material. Here, we describe an in situ on-surface synthesis of monolayer 2D carbon nitride films as a first step toward precise combination with other 2D materials.
View Article and Find Full Text PDFThe metastability of supported metal nanoparticles limits their application in heterogeneous catalysis at elevated temperatures due to their tendency to sinter. One strategy to overcome these thermodynamic limits on reducible oxide supports is encapsulation via strong metal-support interaction (SMSI). While annealing-induced encapsulation is a well-explored phenomenon for extended nanoparticles, it is as yet unknown whether the same mechanisms hold for subnanometer clusters, where concomitant sintering and alloying might play a significant role.
View Article and Find Full Text PDFWe have studied the capability of He focused ion beam (He-FIB) patterning to fabricate defect arrays on the Si/SiO/Graphene interface using a combination of atomic force microscopy (AFM) and Raman imaging to probe damage zones. In general, an amorphized 'blister' region of cylindrical symmetry results upon exposing the surface to the stationary focused He beam. The topography of the amorphized region depends strongly on the ion dose, D , (ranging from 10 to 10ions/spot) with craters and holes observed at higher doses.
View Article and Find Full Text PDFWe present surface X-ray diffraction and fast scanning tunneling microscopy results to elucidate the nature of the surface phase transition on magnetite (001) from a reconstructed to a non-reconstructed surface around 720 K. In situ surface X-ray diffraction at a temperature above the phase transition, at which long-range order is lost, gives evidence that the subsurface cation vacancy reconstruction still exists as a local structural motif, in line with the characteristics of a 2D second-order phase transition. Fast scanning tunneling microscopy results across the phase transition underpin the hypothesis that the reconstruction lifting is initiated by surplus Fe ions occupying subsurface octahedral vacancies.
View Article and Find Full Text PDFTime resolution is one of the most severe limitations of scanning probe microscopies (SPMs), since the typical image acquisition times are in the order of several seconds or even few minutes. As a consequence, the characterization of dynamical processes occurring at surfaces (e.g.
View Article and Find Full Text PDFAim: To provide a guideline of desired knowledge, clinical skills and education levels in Pelvic Physiotherapy (PT). Physiotherapy (PT) involves "using knowledge and skills unique to physiotherapists" and, "is the service only provided by, or under the direction and supervision of a physiotherapist." METHODS: The PT Committee, within the body of the International Continence Society (ICS), collected information regarding existing educational levels for pelvic floor PT.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2017
Nanometer-sized metal clusters are prime candidates for photoactivated catalysis, based on their unique tunable optical and electronic properties, combined with a large surface-to-volume ratio. Due to the very small optical cross sections of such nanoclusters, support-mediated plasmonic activation could potentially make activation more efficient. Our support is a semi-transparent gold film, optimized to work in a back-illumination geometry.
View Article and Find Full Text PDFNature employs self-assembly to fabricate the most complex molecularly precise machinery known to man. Heteromolecular, two-dimensional self-assembled networks provide a route to spatially organize different building blocks relative to each other, enabling synthetic molecularly precise fabrication. Here we demonstrate optoelectronic function in a near-to-monolayer molecular architecture approaching atomically defined spatial disposition of all components.
View Article and Find Full Text PDFMolecular self-assembly is a versatile nanofabrication technique with atomic precision en route to molecule-based electronic components and devices. Here, we demonstrate a three-dimensional, bicomponent supramolecular network architecture on an all-carbon sp(2)-sp(3) transparent platform. The substrate consists of hydrogenated diamond decorated with a monolayer graphene sheet.
View Article and Find Full Text PDFSoft-landing of size-selected Pd(n) (n ≤ 20) nanoclusters on a Moiré-patterned surface of graphene adsorbed on Ru(0001) leads to controlled formation of a truly monodisperse cluster-assembled material. Combined scanning tunneling microscopy and first-principles calculations allow identification of selective adsorption sites, characterization of size-dependent cluster isomers, and exploration of interconversion processes between isomeric forms that manifestly influence cluster surface mobility. Surface-assembled cluster superstructures may be employed in nanocatalytic applications, as well as in fundamental investigations of physical factors controlling bonding, structure, isomerism, and surface mobilities of surface-supported clusters.
View Article and Find Full Text PDFA key challenge in the field of nanotechnology, in particular in the design of molecular machines, novel materials or molecular electronics, is the bottom-up construction of covalently bound molecular architectures in a well-defined arrangement. To date, only rather simple structures have been obtained because of the limitation of one-step connection processes. Indeed, for the formation of sophisticated structures, step-by-step connection of molecules is required.
View Article and Find Full Text PDFWe present the design and the performance of the FAST (Fast Acquisition of SPM Timeseries) module, an add-on instrument that can drive commercial scanning probe microscopes (SPM) at and beyond video rate image frequencies. In the design of this module, we adopted and integrated several technical solutions previously proposed by different groups in order to overcome the problems encountered when driving SPMs at high scanning frequencies. The fast probe motion control and signal acquisition are implemented in a way that is totally transparent to the existing control electronics, allowing the user to switch immediately and seamlessly to the fast scanning mode when imaging in the conventional slow mode.
View Article and Find Full Text PDFThe surface topography and local surface work function of ultrathin MgO(001) films on Ag(001) have been studied by noncontact atomic force microscopy (nc-AFM) and Kelvin probe force microscopy (KPFM). First principles calculations have been used to explain the contrast formation of nc-AFM images. In agreement with literature, thin MgO films grow in islands with a quasi rectangular shape.
View Article and Find Full Text PDFBy means of scanning tunneling microscopy (STM) and density functional theory (DFT) calculations, we characterize at the single-atom level the mechanism of the water formation reaction on the (10 x 2)-O/Rh(110) surface, a prototype of a one-dimensional (1D) oxide where the lattice expansion and the segmentation of the surface play a fundamental role. When the reaction is imaged in the 238-263 K temperature range (35 s/image acquisition time), a peculiar comblike propagation mechanism for the reaction front is found. Fast STM measurements (33 ms/image) prove that this mechanism holds also at room temperature, being therefore an intrinsic characteristic of the reaction on the 1D oxide.
View Article and Find Full Text PDFNanotechnology
November 2008
Mechanical oscillators became a main focus of research in recent years for potential applications in biomolecule detectors. We recently demonstrated the feasibility of a scheme based on twin cantilevers with a sensitivity down to the single molecule. This approach is extremely promising under the condition that the two terminals of the device can be functionalized with high selectivity and nanometric accuracy by linker molecules.
View Article and Find Full Text PDFMetal-organic coordination interactions are prime candidates for the formation of self-assembled, nanometer-scale periodic networks with room-temperature structural stability. We present X-ray photoelectron spectroscopy measurements of such networks at the Cu(100) surface which provide clear evidence for genuine metal-organic coordination. This is evident as binding energy shifts in the O 1s and Fe 3p photoelectron peaks, corresponding to O and Fe atoms involved in the coordination.
View Article and Find Full Text PDFWe studied the molecular orientation of pentacene monolayer phases on the Au(110) surface by means of near-edge X-ray absorption spectroscopy at the carbon K-shell and scanning tunneling microscopy. The highest coverage phase, displaying a (6 x 8) symmetry, is found to be formed by two types of differently oriented molecules mimicking regular arrays of nanorails. Flat-lying molecules, aligned side-by-side with the long molecular axis along the [001] direction, form long crosstie chains extending in the [110] direction.
View Article and Find Full Text PDFWe investigated the effect of the prosaposin-derived peptide prosaptide TX14(A) on tactile allodynia in rats following intraplantar injection of the HIV envelope glycoprotein gp120. Systemic administration of TX14(A) dose-dependently prevented onset of tactile allodynia following intraplantar injection of gp120 and also transiently alleviated established allodynia in the same model. TX14(A) did not prevent tactile allodynia when injected directly into the foot pad whereas intrathecal administration of TX14(A) both prevented and alleviated gp120-induced tactile allodynia.
View Article and Find Full Text PDFThe initial oxidation of the Rh(110) surface was studied by scanning tunneling microscopy, core level spectroscopy, and density functional theory. The experiments were carried out exposing the Rh(110) surface to molecular or atomic oxygen at temperatures in the 500-700 K range. In molecular oxygen ambient, the oxidation terminates at oxygen coverage close to a monolayer with the formation of alternating islands of the (10x2) one-dimensional surface oxide and (2x1)p2mg adsorption phases.
View Article and Find Full Text PDFThe formation conditions, morphology, and reactivity of thin oxide films, grown on a Rh(110) surface in the ambient of atomic or molecular oxygen, have been studied by means of laterally resolved core level spectroscopy, scanning tunneling microscopy and low energy electron diffraction. Exposures of Rh(110) to atomic oxygen lead to subsurface incorporation of oxygen even at room temperature and facile formation of an ordered, laterally uniform surface oxide at approximately 520 K, with a quasi-hexagonal structure and stoichiometry close to that of RhO(2). In the intermediate oxidation stages, the surface oxide coexists with areas of high coverage adsorption phases.
View Article and Find Full Text PDFUsing scanning tunneling microscopy, low-energy electron diffraction, and X-ray photoelectron spectroscopy, we studied the evolution of the structure and chemical state of a Rh(110) surface, modified by K adlayers and exposed to high O2 doses at elevated temperatures. We find that oxygen coadsorption on the K-covered Rh(110) leads to massive reconstruction of the Rh(110) surface. Stable reconstructed (10 x 2) and (8 x 2) segmented phases with a local coverage of more than two oxygen atoms per surface Rh atom were observed.
View Article and Find Full Text PDFWe have previously demonstrated that the prosaposin-derived 14-mer peptide TX14(A) prevents structural and functional abnormalities associated with peripheral neuropathy in diabetic rats. Unusually, this neuroprotective peptide also exhibited acute anti-hyperalgesic properties in the same model, suggesting a dual action of TX14(A) that could allow therapeutic targeting of both degenerative neuropathy and neuropathic pain. In the present study, we have extended investigation of the anti-allodynic properties of TX14(A) to a range of models in which allodynia is induced using metabolic, physical, neurotoxic or chemical/inflammatory damage to the peripheral nerve.
View Article and Find Full Text PDF