Recessive dystrophic epidermolysis bullosa (RDEB) is a rare genetic disease caused by loss of function mutations in the gene coding for collagen VII (C7) due to deficient or absent C7 expression. This disrupts structural and functional skin architecture, leading to blistering, chronic wounds, inflammation, important systemic symptoms affecting the mouth, gastrointestinal tract, cornea, and kidney function, and an increased skin cancer risk. RDEB patients have an extremely poor quality of life and often die at an early age.
View Article and Find Full Text PDFPatients with recessive dystrophic epidermolysis bullosa (RDEB) experience numerous complications, which are exacerbated by inflammatory dysregulation and infection. Understanding the immunological mechanisms is crucial for selecting medications that balance inflammation control and immunocompetence. In this cross-sectional study, aiming to identify potential immunotherapeutic targets and inflammatory biomarkers, we delved into the interrelationship between clinical severity and systemic inflammatory parameters in a representative RDEB cohort.
View Article and Find Full Text PDFRecessive dystrophic epidermolysis bullosa (RDEB) is a genetic extracellular matrix disease caused by deficiency in type VII collagen (Col VII). The disease manifests with devastating mucocutaneous fragility leading to progressive fibrosis and metastatic squamous cell carcinomas. Although Col VII abundance is considered the main predictor of symptom course, previous studies have revealed the existence of mutation-independent mechanisms that control disease progression.
View Article and Find Full Text PDFJAMA Dermatol
April 2022
Importance: Epidermolysis bullosa simplex with muscular dystrophy (EBS-MD) is an autosomal recessive disorder caused by pathogenic variants in PLEC1, which encodes plectin. It is characterized by mild mucocutaneous fragility and blistering and muscle weakness. Translational readthrough-inducing drugs, such as repurposed aminoglycoside antibiotics, may represent a valuable therapeutic alternative for untreatable rare diseases caused by nonsense variants.
View Article and Find Full Text PDFFamilial melanoma accounts for 10% of cases, being the main high-risk gene. However, the mechanisms underlying melanomagenesis in these cases remain poorly understood. Our aim was to analyze the transcriptome of melanocyte-keratinocyte co-cultures derived from healthy skin from familial melanoma patients vs.
View Article and Find Full Text PDFDefective healing leading to cutaneous ulcer formation is one of the most feared complications of diabetes due to its consequences on patients' quality of life and on the healthcare system. A more in-depth analysis of the underlying molecular pathophysiology is required to develop effective healing-promoting therapies for those patients. Major architectural and functional differences with human epidermis limit extrapolation of results coming from rodents and other small mammal-healing models.
View Article and Find Full Text PDFRecessive dystrophic epidermolysis bullosa (RDEB) is an incurable inherited mucocutaneous fragility disorder characterized by recurrent blisters, erosions, and wounds. Continuous blistering triggers overlapping cycles of never-ending healing and scarring commonly evolving to chronic systemic inflammation and fibrosis. The systemic treatment with allogeneic mesenchymal cells (MSC) from bone marrow has previously shown benefits in RDEB.
View Article and Find Full Text PDFVenous leg ulcers (VLU) represent an uphill economic, health and social burden, aggravated in the elderly. Best-practice care interventions are often insufficient and alternative therapies need to be explored. Herein, we have treated for the first time a chronic VLU in an elderly patient by combining cell therapy and tissue engineering in the context of a compassionate use.
View Article and Find Full Text PDFGene editing constitutes a novel approach for precisely correcting disease-causing gene mutations. Frameshift mutations in COL7A1 causing recessive dystrophic epidermolysis bullosa are amenable to open reading frame restoration by non-homologous end joining repair-based approaches. Efficient targeted deletion of faulty COL7A1 exons in polyclonal patient keratinocytes would enable the translation of this therapeutic strategy to the clinic.
View Article and Find Full Text PDFBackground: Cutaneous squamous cell carcinoma (cSCC) is the leading cause of death in patients with recessive dystrophic epidermolysis bullosa (RDEB). We provide the management and prognosis of cSCC in RDEB patients at a Spanish reference center.
Materials And Methods: We retrospectively included patients with RDEB attended in La Paz University Hospital from November 1988 to October 2018.
Background: Recessive dystrophic epidermolysis bullosa (RDEB), Kindler syndrome (KS) and xeroderma pigmentosum complementation group C (XPC) are three cancer-prone genodermatoses whose causal genetic mutations cannot fully explain, on their own, the array of associated phenotypic manifestations. Recent evidence highlights the role of the stromal microenvironment in the pathology of these disorders.
Objectives: To investigate, by means of comparative gene expression analysis, the role played by dermal fibroblasts in the pathogenesis of RDEB, KS and XPC.
Recessive dystrophic epidermolysis bullosa is a severe skin fragility disease caused by loss of functional type VII collagen at the dermal-epidermal junction. A frameshift mutation in exon 80 of COL7A1 gene, c.6527insC, is highly prevalent in the Spanish patient population.
View Article and Find Full Text PDFDystrophic epidermolysis bullosa is a rare blistering condition caused by mutations in the COL7A1 gene. Different clinical variants have been described, with dominant and recessive inheritance, but no consistent findings have been elucidated to establish a genotype-phenotype correlation. We present three unrelated patients with two identical pathogenic compound heterozygous mutations in the COL7A1 gene that developed different clinical forms of dystrophic epidermolysis bullosa-epidermolysis bullosa pruriginosa and mild recessive non-Hallopeau-Siemens-raising the possibility of other genetic or environmental modifying factors responsible for the phenotype of the disease.
View Article and Find Full Text PDFActas Dermosifiliogr (Engl Ed)
March 2018
Epidermolysis bullosa (EB) is a rare genetic disease that causes mucocutaneous fragility. It comprises a clinically and genetically heterogeneous group of disorder characterized by spontaneous or contact/friction-induced blistering. EB is classified into 4 types-simplex, junctional, dystrophic, and Kindler syndrome-and 30 subtypes.
View Article and Find Full Text PDFThe MC1R gene plays a crucial role in pigmentation synthesis. Loss-of-function MC1R variants, which impair protein function, are associated with red hair color (RHC) phenotype and increased skin cancer risk. Cultured cutaneous cells bearing loss-of-function MC1R variants show a distinct gene expression profile compared to wild-type MC1R cultured cutaneous cells.
View Article and Find Full Text PDFGermline mutations in CDKN2A and/or red hair color variants in MC1R genes are associated with an increased susceptibility to develop cutaneous melanoma or non melanoma skin cancer. We studied the impact of the CDKN2A germinal mutation p.G101W and MC1R variants on gene expression and transcription profiles associated with skin cancer.
View Article and Find Full Text PDFRecessive dystrophic epidermolysis bullosa (RDEB) is caused by deficiency of type VII collagen due to COL7A1 mutations such as c.6527insC, recurrently found in the Spanish RDEB population. Assessment of clonal correction-based therapeutic approaches for RDEB requires large expansions of cells, exceeding the replication capacity of human primary keratinocytes.
View Article and Find Full Text PDFBackground: Dystrophic epidermolysis bullosa (DEB) is a rare disease that represents a heavy burden for both the patient and the health care system. There are currently no data on the prevalence of DEB in Spain.
Objective: To determine the prevalence of DEB in Spain.
Cutaneous diabetic wounds greatly affect the quality of life of patients, causing a substantial economic impact on the healthcare system. The limited clinical success of conventional treatments is mainly attributed to the lack of knowledge of the pathogenic mechanisms related to chronic ulceration. Therefore, management of diabetic ulcers remains a challenging clinical issue.
View Article and Find Full Text PDF