J Phys Chem C Nanomater Interfaces
September 2023
The use of powder X-ray diffraction (PXRD) coupled with lattice parameter refinement is used to investigate the crystal structure of Sn-Beta materials. A newly developed semiempirical PXRD model with a reduced tetragonal unit cell is applied to obtain the characteristic crystallographic features. There is a robust correlation between lattice parameters and the concentration of tin and defects for materials prepared via hydrothermal (HT) and postsynthetic (PT) methods.
View Article and Find Full Text PDFFossil-based platform molecules such as ethylene and ethylene oxide currently serve as the primary feedstock for the C -based chemical industry. However, in the search for a more sustainable chemical industry, fossil-based resources may preferentially be replaced by renewable alternatives, provided there is realistic economic feasibility. This Review compares and critically discusses several production routes toward bio-based structural analogues of ethylene oxide and the required adaptations for their implementation in state-of-the-art C -based chemical processes.
View Article and Find Full Text PDFReaction pathways are often tracked with stable isotopes in order to determine the provenance of products in the pathway and to deduce mechanistic information. NMR spectroscopy can provide direct insight into the specific labelling position of the stable isotope. We suggest a simple assay that allows rapid quantitative measurements of isotope distributions in biomass-derived products using commercially available carbohydrate substrates and routine instrumentation.
View Article and Find Full Text PDFThermal cracking of sugars for production of glycolaldehyde, a potential renewable platform molecule, in yields up to 74 % with up to 95 % carbon recovered in the condensed product is demonstrated using glucose as the feed. The process involves spraying an aqueous sugar solution into a fluidized bed of glass beads. Continuous operation is carried out for more than 90 h with complete conversion and stable product selectivity.
View Article and Find Full Text PDFCurrent gaps in the development of sustainable processes include a lack of strategies to systematically identify and optimize the formation of new products. The dehydration of hexoses to 5-hydroxymethylfurfural (HMF) is a particularly widely studied process. In an attempt to identify a new high-selectivity conversion of glucose, quantitative NMR spectroscopy is used to screen conditions that have been reported to yield high conversions of glucose but low formation of HMF.
View Article and Find Full Text PDFA protocol for the Au-promoted anti-Markovnikov hydrothiolation of olefins using ex situ generated methanethiol is reported. The use of S-methylisothiourea hemisulfate salt as a solid precursor for methanethiol generation ensures a safe and reliable deliverance of a stoichiometric amount of this thiol. The procedure was shown to work for a broad range of olefins providing the corresponding hydrothiolated adduct in good to excellent yields.
View Article and Find Full Text PDFA protocol for the Pd-catalysed cyanation of aryl bromides using near stoichiometric and gaseous hydrogen cyanide is reported for the first time. A two-chamber reactor was adopted for the safe liberation of generated HCN in a closed environment, which proved highly efficient in the Ni-catalysed hydrocyanation as the test reaction. Subsequently, this setup was exploited for converting a range of aryl and heteroaryl bromides (28 examples) directly into the corresponding benzonitriles in high yields, without the need for cyanide salts.
View Article and Find Full Text PDFAlkali-metal ions have recently been shown to strongly influence the catalytic behavior of stannosilicates in the conversion of carbohydrates. An effect of having alkali-metal ions present is a pronounced increase in selectivity towards methyl lactate. Mechanistic details of this effect have remained obscure and are herein addressed experimentally through kinetic experiments and isotope tracking.
View Article and Find Full Text PDFThe future role of biomass-derived chemicals relies on the formation of diverse functional monomers in high yields from carbohydrates. Recently, it has become clear that a series of α-hydroxy acids, esters, and lactones can be formed from carbohydrates in alcohol and water solvents using tin-containing catalysts such as Sn-Beta. These compounds are potential building blocks for polyesters bearing additional olefin and alcohol functionalities.
View Article and Find Full Text PDFGlucose isomerisation to fructose can occur by different pathways and the mechanism of zeolite-catalysed glucose isomerisation in methanol has remained incompletely understood. Herein, the mechanism is studied using an H-C HSQC NMR assay resolving different fructose isotopomers. We find that zeolite-catalysed glucose isomerisation proceeds predominantly via a hydride shift into the pro-R position of fructose, thus resembling the stereoselectivity of the enzymatic isomerisation process.
View Article and Find Full Text PDFA highly selective self-condensation of glycolaldehyde to different C molecules has been achieved using Lewis acidic stannosilicate catalysts in water at moderate temperatures (40-100 °C). The medium-sized zeolite pores (10-membered ring framework) in Sn-MFI facilitate the formation of tetrose sugars while hindering consecutive aldol reactions leading to hexose sugars. High yields of tetrose sugars (74 %) with minor amounts of vinyl glycolic acid (VGA), an α-hydroxyacid, are obtained using Sn-MFI with selectivities towards C products reaching 97 %.
View Article and Find Full Text PDFThis study focuses on increasing the selectivity to methyl lactate from sugars using stannosilicates as heterogeneous catalyst. All group I ions are found to have a promoting effect on the resulting methyl lactate yield. Besides, the alkali ions can be added both during the preparation of the catalyst or directly to the solvent mixture to achieve the highest reported yield of methyl lactate (ca.
View Article and Find Full Text PDFThe synthesis of buta-1,3-diene from ethanol has been studied over metal-containing (M=Ag, Cu, Ni) oxide catalysts (MO(x)=MgO, ZrO2, Nb2O5, TiO2, Al2O3) supported on silica. Kinetic study of a wide range of ethanol conversions (2-90%) allowed the main reaction pathways leading to butadiene and byproducts to be determined. The key reaction steps of butadiene synthesis were found to involve ethanol dehydrogenation, acetaldehyde condensation, and the reduction of crotonaldehyde with ethanol into crotyl alcohol.
View Article and Find Full Text PDFPresently, very few compounds of commercial interest are directly accessible from carbohydrates by using nonfermentive approaches. We describe here a catalytic process for the direct formation of methyl lactate from common sugars. Lewis acidic zeotypes, such as Sn-Beta, catalyze the conversion of mono- and disaccharides that are dissolved in methanol to methyl lactate at 160 degrees C.
View Article and Find Full Text PDFThis Full Paper illustrates the use of the C factor (CO(2)/product mass ratio) as a parameter to evaluate the CO(2)-burden of a product. The C factor contains information of the total amount of CO(2) emitted in order to produce a product, and thus enables a direct comparison of different processes from a CO(2) aspect. We illustrate how this simple concept can be used to evaluate different resource types and processes.
View Article and Find Full Text PDFThe possibilities for establishing a renewable chemicals industry featuring renewable resources as the dominant feedstock rather than fossil resources are discussed in this Concept. Such use of biomass can potentially be interesting from both an economical and ecological perspective. Simple and educational tools are introduced to allow initial estimates of which chemical processes could be viable.
View Article and Find Full Text PDFA one-pot procedure is described for using alpha,beta-unsaturated aldehydes as olefin equivalents in the Diels-Alder reaction. The method combines the normal electron demand cycloaddition with aldehyde dienophiles and the rhodium-catalyzed decarbonylation of aldehydes to afford cyclohexenes with no electron-withdrawing substituents. In this way, the aldehyde group serves as a traceless control element to direct the cycloaddition reaction.
View Article and Find Full Text PDF