Publications by authors named "Esben Ravn Andresen"

We report a bending-insensitive multi-core fiber (MCF) for lensless endoscopy imaging with modified fiber geometry that enables optimal light coupling in and out of the individual cores. In a previously reported bending insensitive MCF (twisted MCF), the cores are twisted along the length of the MCF allowing for the development of flexible thin imaging endoscopes with potential applications in dynamic and freely moving experiments. However, for such twisted MCFs the cores are seen to have an optimum coupling angle which is proportional to their radial distance from the center of the MCF.

View Article and Find Full Text PDF

In this work, we demonstrate and evaluate a new design of micro-structured core erbium-doped few-mode fiber to be used as optical amplifier in the context of mode-division multiplexing. This concept is proposed so as to better control the distribution of the Er ions in the core area, thus permitting to adjust the overall differential modal gains between the different signal modes. The design presented here consists of 19 erbium-doped inclusions embedded in a pedestal geometry guiding 10 modes in the C-band.

View Article and Find Full Text PDF

In this Letter, we report a high-efficiency, miniaturized, ultra-fast coherent beam, combined with 3D-printed micro-optics directly on the tip of a multicore fiber bundle. The highly compact device footprint (180 µm in diameter) facilitates its incorporation into a minimally invasive ultra-thin nonlinear endoscope to perform two-photon imaging.

View Article and Find Full Text PDF

We present the use of the Douglas-Gunn Alternating Direction Implicit finite difference method for computationally efficient simulation of the electric field propagation through a wide variety of optical fiber geometries. The method can accommodate refractive index profiles of arbitrary shape and is implemented in a tool called BPM-Matlab. We validate BPM-Matlab by comparing it to published experimental, numerical, and theoretical data and to commercially available state-of-the-art software.

View Article and Find Full Text PDF

Stimulated Raman Scattering (SRS) imaging can be hampered by non-resonant parasitic signals that lead to imaging artifacts and eventually overwhelm the Raman signal of interest. Stimulated Raman gain opposite loss detection (SRGOLD) is a three-beam excitation scheme capable of suppressing this nonlinear background while enhancing the resonant Raman signal. We present here a compact electro-optical system for SRGOLD excitation which conveniently exploits the idler beam generated by an optical parametric oscillator (OPO).

View Article and Find Full Text PDF

We propose and fabricate a novel ring-core photonic crystal fiber made of a circular ring core surrounded by a cladding constituted of air holes organized in a first circular ring surrounded by hexagonal ones. The fiber efficiently supports four different groups of orbital angular momentum (OAM) modes. The effective indices of spin-orbit aligned and spin-orbit anti-aligned modes in the same OAM modes group are separated by at least 2.

View Article and Find Full Text PDF

Coherent Raman scattering microscopy is a fast, label-free, and chemically specific imaging technique that shows high potential for future in vivo optical histology. However, the imaging depth in tissues is limited to the sub-millimeter range because of absorption and scattering. Realization of coherent Raman imaging using a fiber endoscope system is a crucial step towards imaging deep inside living tissues and providing information that is inaccessible with current microscopy tools.

View Article and Find Full Text PDF

A simple technique for far-field single-shot noninterferometric determination of the phase transmission matrix of a multicore fiber with over 100 cores is presented. This phase retrieval technique relies on the aperiodic arrangement of the cores.

View Article and Find Full Text PDF

We report two-photon lensless imaging through a novel Fermat's golden spiral multicore fiber. This unique layout optimizes the sidelobe levels, field of view, crosstalk, group delay, and mode density to achieve a sidelobe contrast of at least 10.9 dB.

View Article and Find Full Text PDF

We developed a generalized field-propagating model for active optical fibers that takes into account mode beating and mode coupling through the amplifying medium. We applied the model to the particular case of a few-mode erbium doped fiber amplifier. Results from the model predict that mode coupling mediated by the amplifying medium is very low.

View Article and Find Full Text PDF

We examine the impact of fiber bends on ultrashort pulse propagation in a 169-core multicore fiber (MCF) by numerical simulations and experimental measurements. We show that an L-shaped bend (where only one end of the MCF is fixed) induces significant changes in group delays that are a function of core position but linear along the bending axis with a slope directly proportional to the bending angle. For U- and S-shaped bends (where both ends of the MCF are fixed) the induced refractive index and group delay changes are much smaller than the residual, intrinsic inter-core group delay differences of the unbent MCF.

View Article and Find Full Text PDF

Hollow core fibers are considered as promising candidates to deliver intense temporally overlapping picosecond pulses in applications such as stimulated Raman scattering (SRS) microscopy and endoscopy because of their inherent low nonlinearity compared to solid-core silica fibers. Here we demonstrate that, contrary to prior assumptions, parasitic signals are generated in Kagomé lattice hollow core fibers. We identify the origin of the parasitic signals as an interplay between the Kerr nonlinearity of air and frequency-dependent fiber losses.

View Article and Find Full Text PDF

Multicore fiber bundles are widely used in endoscopy due to their miniature size and their direct imaging capabilities. They have recently been used, in combination with spatial light modulators, in various realizations of endoscopy with little or no optics at the distal end. These schemes require characterization of the relative phase offsets between the different cores, typically done using off-axis holography, thus requiring both an interferometric setup and, typically, access to the distal tip.

View Article and Find Full Text PDF

We demonstrate pixelation-free real-time widefield endoscopic imaging through an aperiodic multicore fiber (MCF) without any distal opto-mechanical elements or proximal scanners. Exploiting the memory effect in MCFs, the images in our system are directly obtained without any post-processing using a static wavefront correction obtained from a single calibration procedure. Our approach allows for video-rate 3D widefield imaging of incoherently illuminated objects with imaging speed not limited by the wavefront-shaping device refresh rate.

View Article and Find Full Text PDF

We take stock of the progress that has been made into developing ultrathin endoscopes assisted by wave front shaping. We focus our review on multicore fiber-based lensless endoscopes intended for multiphoton imaging applications. We put the work into perspective by comparing with alternative approaches and by outlining the challenges that lie ahead.

View Article and Find Full Text PDF

We investigate lensless endoscopy using coherent beam combining and aperiodic multicore fibers (MCF). We show that diffracted orders, inherent to MCF with periodically arranged cores, dramatically reduce the field-of-view (FoV), and that randomness in MCF core positions can increase the FoV up to the diffraction limit set by a single fiber core, while maintaining a MCF experimental feasibility. We demonstrate experimentally pixelation-free lensless endoscopy imaging over a 120 μm FoV with an aperiodic MCF designed with widely spaced cores.

View Article and Find Full Text PDF

Flexible fiber-optic endoscopes provide a solution for imaging at depths beyond the reach of conventional microscopes. Current endoscopes require focusing and/or scanning mechanisms at the distal end, which limit miniaturization, frame-rate, and field of view. Alternative wavefront-shaping based lensless solutions are extremely sensitive to fiber-bending.

View Article and Find Full Text PDF

We report an experimental test of single-shot polarimetry applied to the problem of real-time monitoring of the output polarization states in each core within a multicore fiber bundle. The technique uses a stress-engineered optical element, together with an analyzer, and provides a point spread function whose shape unambiguously reveals the polarization state of a point source. We implement this technique to monitor, simultaneously and in real time, the output polarization states of up to 180 single-mode fiber cores in both conventional and polarization-maintaining fiber bundles.

View Article and Find Full Text PDF

Rigid endoscopes like graded-index (GRIN) lenses are known tools in biological imaging, but it is conceptually difficult to miniaturize them. In this letter, we demonstrate an ultra-thin rigid endoscope with a diameter of only 125 μm. In addition, we identify a domain where two-photon endoscopic imaging with fs-pulse excitation is possible.

View Article and Find Full Text PDF

We show femtosecond time-resolved nonlinear pump-probe spectroscopy using a fiber soliton as the probe pulse. Furthermore, we exploit soliton dynamics to record an entire transient trace with a power-encoded delay sweep. The power-encoded delay line takes advantage of the dependency of the soliton trajectory in the (λ,z) space upon input power; the difference in accumulated group delay between trajectories converts a fast power sweep into a fast delay sweep.

View Article and Find Full Text PDF

We propose a three-color, double-modulation scheme for the background-free detection of stimulated Raman scattering (SRS). We call the scheme stimulated Raman gain and opposite loss detection (SRGOLD). It exploits the symmetric nature of potential parasitic signals (cross phase modulation, two-photon absorption, and thermal effects) to the end of suppressing them.

View Article and Find Full Text PDF

We report a first demonstration of two-photon endoscopic imaging with a lensless endoscope. The endoscope probe is a double-clad bundle of single-mode fibers; point excitation and scanning is achieved by coherent combining of femtosecond light pulses propagating in the single-mode fibers; and back-scattered two-photon signal is collected through the multi-mode inner cladding. We demonstrate the two-photon endoscope on a test sample of rhodamine 6G crystals.

View Article and Find Full Text PDF

We demonstrate the existence of the spectral phase shift a pulse experiences when it is subjected to spectral focusing. This π/2 phase shift is the spectral analog of the Gouy phase shift a 2D beam experiences when it crosses its focal plane. This spectral Gouy phase shift is measured using spectral interference between a reference pulse and a negatively chirped parabolic pulse experiencing spectral focusing in a nonlinear photonic crystal fiber.

View Article and Find Full Text PDF

We report a step toward scanning endomicroscopy without distal optics. The focusing of the beam at the distal end of a fiber bundle is achieved by imposing a parabolic phase profile across the exit face with the aid of a spatial light modulator. We achieve video-rate images by galvanometric scanning of the phase tilt at the proximal end.

View Article and Find Full Text PDF

We demonstrate stimulated Raman microscopy with broadband pump and Stokes pulses, using spectral focusing to attain spectral resolution and to rapidly acquire spectra within a spectral window determined by the bandwidth of the pulses. As the Stokes pulse, we use the redshifted soliton generated in a photonic crystal fiber, which allows for simple shifting of the accessible spectral window.

View Article and Find Full Text PDF