Publications by authors named "Esat T"

The detection of faint magnetic fields from single-electron and nuclear spins at the atomic scale is a long-standing challenge in physics. While current mobile quantum sensors achieve single-electron spin sensitivity, atomic spatial resolution remains elusive for existing techniques. Here we fabricate a single-molecule quantum sensor at the apex of the metallic tip of a scanning tunnelling microscope by attaching Fe atoms and a PTCDA (3,4,9,10-perylenetetracarboxylic-dianhydride) molecule to the tip apex.

View Article and Find Full Text PDF

We present the design and performance of an ultra-high vacuum scanning tunneling microscope (STM) that uses adiabatic demagnetization of electron magnetic moments for controlling its operating temperature ranging between 30 mK and 1 K with an accuracy of up to 7 μK rms. At the same time, high magnetic fields of up to 8 T can be applied perpendicular to the sample surface. The time available for STM experiments at 50 mK is longer than 20 h, at 100 mK about 40 h.

View Article and Find Full Text PDF

Designing and characterizing the many-body behaviors of quantum materials represents a prominent challenge for understanding strongly correlated physics and quantum information processing. We constructed artificial quantum magnets on a surface by using spin-1/2 atoms in a scanning tunneling microscope (STM). These coupled spins feature strong quantum fluctuations due to antiferromagnetic exchange interactions between neighboring atoms.

View Article and Find Full Text PDF

Single spins are considered as a versatile candidate for miniaturizing information devices down to the nanoscale. To engineer the spin's properties, metal-organic frameworks provide a promising route which in turn requires thorough understanding of the metal-molecule interaction. Here, we investigate the magnetic robustness of a single iron (Fe) atom in artificially built Fe-tetracyanoethylene (TCNE) complexes by using low-temperature scanning tunneling microscopy (STM).

View Article and Find Full Text PDF

Spin resonance of single spin centers bears great potential for chemical structure analysis, quantum sensing, and quantum coherent manipulation. Essential for these experiments is the presence of a two-level spin system whose energy splitting can be chosen by applying a magnetic field. In recent years, a combination of electron spin resonance (ESR) and scanning tunneling microscopy (STM) has been demonstrated as a technique to detect magnetic properties of single atoms on surfaces and to achieve sub-microelectronvolts energy resolution.

View Article and Find Full Text PDF

Achieving time-domain control of quantum states with atomic-scale spatial resolution in nanostructures is a long-term goal in quantum nanoscience and spintronics. Here, we demonstrate coherent spin rotations of individual atoms on a surface at the nanosecond time scale, using an all-electric scheme in a scanning tunneling microscope (STM). By modulating the atomically confined magnetic interaction between the STM tip and surface atoms, we drive quantum Rabi oscillations between spin-up and spin-down states in as little as ~20 nanoseconds.

View Article and Find Full Text PDF
Article Synopsis
  • Electric potentials are present at the atomic level due to the interaction between positive nuclei and negative electrons, but large structures overshadow the small ones, making it hard to measure these potentials.
  • A new non-contact scanning probe technique has been developed to quantify electric potentials from nanoscale objects by using a quantum dot sensor and optimizing the electrostatic interaction between the probe tip and surface.
  • This method allows for imaging of surface potentials down to single atoms and has been successfully applied to study nanostructured surfaces, confirming its effectiveness in analyzing fundamental material properties at the atomic scale.
View Article and Find Full Text PDF

The approximately 10,000-year-long Last Glacial Maximum, before the termination of the last ice age, was the coldest period in Earth's recent climate history. Relative to the Holocene epoch, atmospheric carbon dioxide was about 100 parts per million lower and tropical sea surface temperatures were about 3 to 5 degrees Celsius lower. The Last Glacial Maximum began when global mean sea level (GMSL) abruptly dropped by about 40 metres around 31,000 years ago and was followed by about 10,000 years of rapid deglaciation into the Holocene.

View Article and Find Full Text PDF

Scanning probe microscopy makes it possible to image and spectroscopically characterize nanoscale objects, and to manipulate and excite them; even time-resolved experiments are now routinely achieved. This combination of capabilities has enabled proof-of-principle demonstrations of nanoscale devices, including logic operations based on molecular cascades , a single-atom transistor , a single-atom magnetic memory cell and a kilobyte atomic memory . However, a key challenge is fabricating device structures that can overcome their attraction to the underlying surface and thus protrude from the two-dimensional flatlands of the surface.

View Article and Find Full Text PDF

We present a physically intuitive model of molecular quantum dots beyond the constant interaction approximation. It accurately describes their charging behavior and allows the extraction of important molecular properties that are otherwise experimentally inaccessible. The model is applied to data recorded with a noncontact atomic force microscope on three different molecules that act as a quantum dot when attached to the microscope tip.

View Article and Find Full Text PDF

Considering organic molecules as the functional building blocks of future nanoscale technology, the question of how to arrange and assemble such building blocks in a bottom-up approach is still open. The scanning probe microscope (SPM) could be a tool of choice; however, SPM-based manipulation was until recently limited to two dimensions (2D). Binding the SPM tip to a molecule at a well-defined position opens an opportunity of controlled manipulation in 3D space.

View Article and Find Full Text PDF

Controlled manipulation of single molecules is an important step towards the fabrication of single molecule devices and nanoscale molecular machines. Currently, scanning probe microscopy (SPM) is the only technique that facilitates direct imaging and manipulations of nanometer-sized molecular compounds on surfaces. The technique of hand-controlled manipulation (HCM) introduced recently in Beilstein J.

View Article and Find Full Text PDF

One of the paramount goals in nanotechnology is molecular-scale functional design, which includes arranging molecules into complex structures at will. The first steps towards this goal were made through the invention of the scanning probe microscope (SPM), which put single-atom and single-molecule manipulation into practice for the first time. Extending the controlled manipulation to larger molecules is expected to multiply the potential of engineered nanostructures.

View Article and Find Full Text PDF

Tropical south-western Pacific temperatures are of vital importance to the Great Barrier Reef (GBR), but the role of sea surface temperatures (SSTs) in the growth of the GBR since the Last Glacial Maximum remains largely unknown. Here we present records of Sr/Ca and δ(18)O for Last Glacial Maximum and deglacial corals that show a considerably steeper meridional SST gradient than the present day in the central GBR. We find a 1-2 °C larger temperature decrease between 17° and 20°S about 20,000 to 13,000 years ago.

View Article and Find Full Text PDF

The oscillations between glacial and interglacial climate conditions over the past three million years have been characterized by a transfer of immense amounts of water between two of its largest reservoirs on Earth -- the ice sheets and the oceans. Since the latest of these oscillations, the Last Glacial Maximum (between about 30,000 and 19,000 years ago), approximately 50 million cubic kilometres of ice has melted from the land-based ice sheets, raising global sea level by approximately 130 metres. Such rapid changes in sea level are part of a complex pattern of interactions between the atmosphere, oceans, ice sheets and solid earth, all of which have different response timescales.

View Article and Find Full Text PDF

Milankovitch orbital forcing theory has been used to assign time scales to many paleoclimate records. However, the validity of this theory remains uncertain, and independent sea-level chronologies used to test its applicability have been restricted largely to the past approximately 135,000 years. Here, we report U-series ages for coral reefs formed on Henderson Island during sea-level high-stands occurring at approximately 630,000 and approximately 330,000 years ago.

View Article and Find Full Text PDF

Uplifted coral terraces at Huon Peninsula, Papua New Guinea, preserve a record of sea level, sea-surface temperature, and salinity from the penultimate deglaciation. Remnants have been found of a shallow-water reef that formed during a pause, similar to the Younger Dryas, in the penultimate deglaciation at 130,000 +/- 2000 years ago, when sea level was 60 to 80 meters lower than it is today. Porites coral, which grew during this period, has oxygen isotopic values and strontium/calcium ratios that indicate that sea-surface temperatures were much cooler (22 degrees +/- 2 degreesC) than either Last Interglacial or present-day tropical temperatures (29 degrees +/- 1 degreesC).

View Article and Find Full Text PDF

About 140,000 years ago, the breakup of large continental ice sheets initiated the Last Interglacial period. Sea level rose and peaked around 135,000 years ago about 14 meters below present levels. A record of Last Interglacial sea levels between 116,000 years to 136, 000 years ago is preserved at reef VII of the uplifted coral terraces of Huon Peninsula in Papua New Guinea.

View Article and Find Full Text PDF

The magnesium isotopic composition of some extraterrestrial dust particles has been measured. The particles are believed to be samples of interplanetary dust, a significant fraction of which originated from the disaggregation of comets and may contain preserved isotopic anomalies. Improvements in mass spectrometric and sample preparation techniques have made it possible to measure the magnesium isotopic composition of the dust particles, which are typically 10 micrometers in size and contain on the order of 10(-10) gram of magnesium.

View Article and Find Full Text PDF