Electrochemical studies were conducted to analyze the behavior of eugenol, CuCl, and their complex using cyclic voltammetry. The oxidation mechanisms of eugenol and the redox behavior of copper ions were elucidated, showing differences in reversibility and charge transfer coefficients. Various kinetic and solvation parameters were determined.
View Article and Find Full Text PDFThis study aimed to investigate the ion pair association values and association parameters of nano MnSO in water and methanol-water mixtures (20 % and 40 % methanol by mass percentage) at varying temperatures (298.15, 303.15, 308.
View Article and Find Full Text PDFThis study investigated the physicochemical properties of the interaction of indomethacin and copper chloride using the electrical conductance measurement in methanol, ethanol, and their binary mixture with water at room temperature (298.15 K), to determine the solvation behavior, redox behavior, and kinetics. The association parameters were computed using the Fuoss-Hsia-Fernández-Prini and Fuoss-Shedlovsky models.
View Article and Find Full Text PDFA novel hydrazone ligand (-HBMP) -(benzo[]thiazol-2-yl)-3-oxo-3-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)propanamide alongside its Cu(II), Cd(II), and VO(II) complexes were prepared and structurally characterized via various spectroscopic analyses (Fourier transform infrared spectroscopy, UV-visible spectroscopy, H/C NMR spectroscopy, liquid chromatography coupled to mass spectrometry, and electron paramagnetic resonance spectroscopy) as well as by elemental analysis, thermal gravimetry analysis/differential thermal analysis, and magnetic moment measurements. Powder X-ray diffraction analysis was also performed for the free ligand and its metal complexes to determine the crystallographic structures and atomic spacing. It also provided information on unit cell dimensions and the average crystallite size.
View Article and Find Full Text PDF