Revealing the complex interactions between ecosystem services (ESs) and their underlying mechanisms is a prerequisite for formulating sustainable ecological management strategies. However, few studies have conducted a comprehensive analysis of the driving and response mechanisms of ESs interactions. Therefore, this study established an integrated framework to first quantify the interactions between ESs, then identify their dominant natural-socioeconomic drivers, explore their spatial non-stationary responses, and ultimately propose corresponding strategies to optimize ecosystem management.
View Article and Find Full Text PDFUnderstanding how climate change influences succession is fundamental for predicting future forest composition. Warming is expected to accelerate species succession at their cold thermal ranges, such as alpine treelines. Here we examined how interactions and successional strategies of the early-successional birch (Betula utilis) and the late-successional fir (Abies spectabilis) affected treeline dynamics by combining plot data with an individual-based treeline model at treelines in the central Himalayas.
View Article and Find Full Text PDFAs major terrestrial carbon sinks, forests play an important role in mitigating climate change. The relationship between the seasonal uptake of carbon and its allocation to woody biomass remains poorly understood, leaving a significant gap in our capacity to predict carbon sequestration by forests. Here, we compare the intra-annual dynamics of carbon fluxes and wood formation across the Northern hemisphere, from carbon assimilation and the formation of non-structural carbon compounds to their incorporation in woody tissues.
View Article and Find Full Text PDFExtreme drought events have increased, causing serious losses and damage to the social economy under current warming conditions. However, short-term meteorological data limit our understanding and projection of these extremes. With the accumulation of proxy data, especially tree-ring data, large-scale precipitation field reconstruction has provided opportunities to explore underlying mechanisms further.
View Article and Find Full Text PDFThe impact of anthropogenic global warming has induced significant upward dispersal of trees to higher elevations at alpine treelines. Assessing vertical deviation from current uppermost tree distributions to potential treeline positions is crucial for understanding ecosystem responses to evolving global climate. However, due to data resolution constraints and research scale limitation, comprehending the global pattern of alpine treeline elevations and driving factors remains challenging.
View Article and Find Full Text PDFWood growth is key to understanding the feedback of forest ecosystems to the ongoing climate warming. An increase in spatial synchrony (i.e.
View Article and Find Full Text PDFDrought is the driver for ecosystem production in semi-arid areas. However, the response mechanism of ecosystem productivity to drought remains largely unknown. In particular, it is still unclear whether drought limits the production via photosynthetic capacity or phenological process.
View Article and Find Full Text PDFAlthough the global climate is warming, external forcing driven by explosive volcanic eruptions may still cause abrupt cooling. The 1809 and 1815 Tambora eruptions caused lasting cold extremes worldwide, providing a unique lens that allows us to investigate the magnitude of global forest resilience to and recovery from volcanic cooling. Here, we show that growth resilience inferred from tree-ring data was severely impacted by cooling in high latitudes and elevations: the average tree growth decreased substantially (up to 31.
View Article and Find Full Text PDFDespite the importance of species interaction in modulating the range shifts of plants, little is known about the responses of coexisting life forms to a warmer climate. Here, we combine long-term monitoring of cambial phenology in sympatric trees and shrubs at two treelines of the Tibetan Plateau, with a meta-analysis of ring-width series from 344 shrubs and 575 trees paired across 11 alpine treelines in the Northern Hemisphere. Under a spring warming of +1°C, xylem resumption advances by 2-4 days in trees, but delays by 3-8 days in shrubs.
View Article and Find Full Text PDFGlob Chang Biol
December 2023
Mountain treelines are thought to be sensitive to climate change. However, how climate impacts mountain treelines is not yet fully understood as treelines may also be affected by other human activities. Here, we focus on "closed-loop" mountain treelines (CLMT) that completely encircle a mountain and are less likely to have been influenced by human land-use change.
View Article and Find Full Text PDFIntroduction: Shrub promotes the survival, growth and reproduction of understory species by buffering the environmental extremes and improving limited resources (i.e., facilitation effect) in arid and semiarid regions.
View Article and Find Full Text PDFHigh-elevation trees cannot always reach the thermal treeline, the potential upper range limit set by growing-season temperature. But delineation of the realized upper range limit of trees and quantification of the drivers, which lead to trees being absent from the treeline, is lacking. Here, we used 30 m resolution satellite tree-cover data, validated by more than 0.
View Article and Find Full Text PDFClimatic warming alters the onset, duration and cessation of the vegetative season. While previous studies have shown a tight link between thermal conditions and leaf phenology, less is known about the impacts of phenological changes on tree growth. Here, we assessed the relationships between the start of the thermal growing season and tree growth across the extratropical Northern Hemisphere using 3,451 tree-ring chronologies and daily climatic data for 1948-2014.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2022
Shrub recruitment, a key component of vegetation dynamics beyond forests, is a highly sensitive indicator of climate and environmental change. Warming-induced tipping points in Arctic and alpine treeless ecosystems are, however, little understood. Here, we compare two long-term recruitment datasets of 2,770 shrubs from coastal East Greenland and from the Tibetan Plateau against atmospheric circulation patterns between 1871 and 2010 Common Era.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2021
Treeline ecotone is an alpine ecological transition zone characterized by strong biotic interactions, which are closely related to treeline ecological processes. Herein, we reviewed the research progress regarding the impacts of plant-plant, plant-animal, and plant-microbe interactions on the ecological processes of treeline ecotone under climate change. Both facilitation and competition among individual plants are important factors mediating dynamics of treeline processes under climate change.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2021