Publications by authors named "Eryse Amira Seth"

Neuroinflammation has emerged as a shared molecular mechanism in epilepsy and cognitive impairment, offering new insights into the complex interplay between immune responses and brain function. Evidence reveals involvement of High mobility group box 1 (HMGB1) in blood-brain barrier disruption and correlations with epilepsy severity and drug resistance. While anti-inflammatory treatments show promise, translating these discoveries faces challenges in elucidating mechanisms and developing reliable biomarkers.

View Article and Find Full Text PDF

A reliable seizure detection or prediction device can potentially reduce the morbidity and mortality associated with epileptic seizures. Previous findings indicating alterations in cardiac activity during seizures suggest the usefulness of cardiac parameters for seizure detection or prediction. This study aims to examine available studies on seizure detection and prediction based on cardiac parameters using non-invasive wearable devices.

View Article and Find Full Text PDF

Ruxolitinib is the first janus kinase 1 (JAK1) and JAK2 inhibitor that was approved by the United States Food and Drug Administration (FDA) agency for the treatment of myeloproliferative neoplasms. The drug targets the JAK/STAT signalling pathway, which is critical in regulating the gliogenesis process during nervous system development. In the study, we assessed the effect of non-maternal toxic dosages of ruxolitinib (0-30 mg/kg/day between E7.

View Article and Find Full Text PDF

Down syndrome (DS), is the most common cause of intellectual disability, and is characterized by defective neurogenesis during perinatal development. To identify metabolic aberrations in early neurogenesis, we profiled neurospheres derived from the embryonic brain of Ts1Cje, a mouse model of Down syndrome. High-throughput phenotypic microarray revealed a significant decrease in utilisation of 17 out of 367 substrates and significantly higher utilisation of 6 substrates in the Ts1Cje neurospheres compared to controls.

View Article and Find Full Text PDF

The JAK-STAT signalling pathway is one of the key regulators of pro-gliogenesis process during brain development. Down syndrome (DS) individuals, as well as DS mouse models, exhibit an increased number of astrocytes, suggesting an imbalance of neurogenic-to-gliogenic shift attributed to dysregulated JAK-STAT signalling pathway. The gene and protein expression profiles of JAK-STAT pathway members have not been characterised in the DS models.

View Article and Find Full Text PDF

Notch signalling pathway is involved in the proliferation of neural progenitor cells (NPCs), to inhibit neuronal cell commitment and to promote glial cell fate. Notch protein is cleaved by gamma-secretase, a multisubunit transmembrane protein complex that releases the Notch intracellular domain (NICD) and subsequently activates the downstream targets. Down syndrome (DS) individuals exhibit an increased number of glial cells (particularly astrocytes), and reduced number of neurons suggesting the involvement of Notch signalling pathway in the neurogenic-to-gliogenic shift in DS brain.

View Article and Find Full Text PDF