Wetlands export large amounts of dissolved organic carbon (DOC) downstream, which is sensitive to water-table fluctuations (WTFs). While numerous studies have shown that WTFs may decrease wetland DOC via enhancing DOC biodegradation, an alternative pathway, i.e.
View Article and Find Full Text PDFSubsoils contain >50% of soil organic carbon (SOC) globally yet remain under-investigated in terms of their response to climate changes. Recent evidence suggests that warmer, drier conditions in alpine grasslands induce divergent responses in SOC decomposition and carbon accrual in top- versus subsoils. However, longer term effects on microbial activity (i.
View Article and Find Full Text PDFAs the main form of land use and human disturbance of grassland, livestock grazing has great influences on the soil resources and plant communities. This study observed the variation of soil properties and community characteristics of four treatments of different grazing intensity (no grazing, UG; light grazing, LG; moderate grazing, MG; and heavy grazing, HG) in an alpine meadow of Sichuan Province on the northeastern margin of the Tibetan Plateau. The results showed that grazing increased the pH, soil bulk density (BD), and contents of total carbon (TC) and total nitrogen (TN), and the BD increased while the others decreased with the grazing intensity.
View Article and Find Full Text PDFWarming and water table drawdown greatly reshape peatland carbon cycle, especially when considering the old carbon stored under the peatland subsurface. However, little is known about the effects of warming, oxidizing by drying or their combination on carbon decomposition at different depths (0-100 cm) of peat. In this research, soil of different depths from Zoige Plateau was incubated in four scenarios (8 °C-anaerobic, 8 °C-aerobic, 18 °C-anaerobic and 18 °C-aerobic) to detect the exported carbon.
View Article and Find Full Text PDF