Publications by authors named "Erwin Rosenberg"

The unique properties of per- and polyfluoroalkyl substances (PFAS) have led to their extensive use in consumer products, including ski wax. Based on the risks associated with PFAS, and to align with PFAS regulations, the international ski federation (FIS) implemented a ban on products containing "C fluorocarbons/perfluorooctanoate (PFOA)" at all FIS events from the 2021/2022 season, leading manufactures to shift their formulations towards short-chain PFAS chemistries. To date, most studies characterising PFAS in ski waxes have measured a suite of individual substances using targeted analytical approaches.

View Article and Find Full Text PDF

Multiplex sampling, so far mainly used as a tool for S/N ratio improvement in spectroscopic applications and separation techniques, has been investigated here for its potential suitability for time-resolved monitoring where chromatograms of transient signals are recorded at intervals much shorter than the chromatographic runtime. Different designs of multiplex sample introduction were developed and utilized to analyze lithium-ion battery degradation products under normal or abuse conditions to achieve fast and efficient sample introduction. After comprehensive optimization, measurements were performed on two different GC systems, with either barrier discharge ionization detection (BID) or mass spectrometric detection (MS).

View Article and Find Full Text PDF

Background: Omics is used as an analytical tool to investigate wine authenticity issues. Aging authentication ensures that the wine has undergone the necessary maturation and developed its desired organoleptic characteristics. Considering that aged wines constitute valuable commodities, the development of advanced omics techniques that guarantee aging authenticity and prevent fraud is essential.

View Article and Find Full Text PDF

Caffeine is the most widely consumed stimulant and is the subject of significant ongoing research and discussions due to its impact on human health. The industry's need to comply with country-specific food and beverage regulations underscores the importance of monitoring caffeine levels in commercial products. In this study, we propose an alternative technique for caffeine analysis that relies on mid-infrared laser-based photothermal spectroscopy (PTS).

View Article and Find Full Text PDF

This feature article discusses the enabling role of analytical chemistry in important fields of research and development such as life science, material sciences and environmental sciences. It comments on the often limited visibility of analytical sciences in the public perception and suggests ways to overcome this shortcoming and to create bigger impact.

View Article and Find Full Text PDF

Cloud point extraction is an environmentally benign and simple separation/concentration procedure that can be regarded as an alternative to classical liquid-liquid extraction. In the current work, it was studied the compatibility of cloud point extraction followed by back-extraction in low volume of organic solvent with gas chromatography-mass spectrometry (GC-MS and GC-MS/MS). Triton X-100 was preferred than Triton X-114 as a surfactant to produce the clouding phenomenon and hexane or isooctane was found to be appropriate organic solvents which can be used at the back-extraction step.

View Article and Find Full Text PDF

Magnet-integrated fabric phase sorptive extraction (MI-FPSE) is a sample preparation technique that has proved to be a powerful tool for environmental analysis. The fabrication and application of magnet-integrated dual sorbent-based FPSE membrane prepared by combining two different sol-gel sorbent-coated disks of different polarities together with a magnetic bar inserted between the two membranes to allow the stirring, was examined as novel preparation technique that not required samples pretreatments. The dual sorbent-based sample preparation platforms (made up of poly(tetrahydrofuran) and Carbowax 20M) were used for the extraction of seven classes of pesticides from ambient surface water samples prior to their determination by gas chromatography-mass spectrometry.

View Article and Find Full Text PDF

In this work, a solid-phase microextraction (SPME) method combined with two-dimensional gas chromatography coupled to mass spectrometry (GC × GC-MS) was optimized and used to assess the authenticity of pomegranate juice to prevent fraudulent practices. A divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber was used for the extraction of the volatiles. The critical parameters that affect the extraction process, such as the sample volume, and the extraction time were studied.

View Article and Find Full Text PDF

In this work, different sol-gel sorbent-coated second-generation fabric phase sorptive extraction (FPSE) membranes were synthesized using titania-based sol-gel precursors. The proposed membranes were tested for their efficiency to extract eleven selected organophosphorus pesticides (OPPs) from apple juice samples. Among the examined materials, sol-gel C coated titania-based FPSE membranes showed the highest extraction efficiency.

View Article and Find Full Text PDF

Polymeric composite materials are gaining importance due to their universal applicability and easy adaptability for their intended use. For the comprehensive characterization of these materials, the concurrent determination of the organic and the elemental constituents is necessary, which cannot be provided by classical analysis methods. In this work, we present a novel approach for advanced polymer analysis.

View Article and Find Full Text PDF

In this work, a solid-phase microextraction (SPME) Arrow method combined with comprehensive two-dimensional gas chromatography-mass spectrometry (GC × GC-MS) was developed for the elucidation of the volatile composition of honey samples. The sample preparation protocol was optimized to ensure high extraction efficiency of the volatile organic compounds (VOCs) which are directly associated with the organoleptic properties of honey and its acceptance by the consumers. Following its optimization, SPME Arrow was compared to conventional SPME in terms of sensitivity, precision, and number of extracted VOCs.

View Article and Find Full Text PDF

This study presents the first mid-infrared (IR)-based method capable of simultaneously predicting concentrations of individual fatty acids (FAs) and relevant sum parameters in human milk (HM). Representative fat fractions of 50 HM samples were obtained by rapid, two-step centrifugation and subsequently measured with attenuated total reflection IR spectroscopy. Partial least squares models were compiled for the acquired IR spectra with gas chromatography-mass spectrometry (GC-MS) reference data.

View Article and Find Full Text PDF

We present a novel sample preparation method for the extraction and preconcentration of volatile organic compounds from whiskey samples prior to their determination by comprehensive two-dimensional gas chromatography (GC × GC) coupled to mass spectrometry (MS). Sample preparation of the volatile compounds, important for the organoleptic characteristics of different whiskeys and their acceptance and liking by the consumers, is based on the use of the solid-phase microextraction (SPME) Arrow. After optimization, the proposed method was compared with conventional SPME regarding the analysis of different types of whiskey (i.

View Article and Find Full Text PDF

This study provides the first assessment of the volatile metabolome map of and originating from Greece using headspace solid-phase micro-extraction (HS-SPME) coupled to gas chromatography-mass spectrometry (GC-MS). For the extraction of the volatile fraction, the SPME protocol was optimized after examining the effects of sample mass, extraction temperature, and extraction time using the one-variable at-a-time approach (OVAT). The optimum parameters involved the extraction of 100 mg of homogenized truffle for 45 min at 50°C.

View Article and Find Full Text PDF

A novel micro-meso porous activated carbon/FeO (Bm) composite was synthesized from the active charcoal precursor BAX-1500 and used in the magnetic solid-phase extraction (MSPE) of caffeine prior to its determination by gas chromatography-mass spectrometry (GC-MS). The main factors affecting the extraction and desorption steps of the MSPE procedure were investigated and optimized. These factors include extraction time, sorbent mass and salt addition for the adsorption step and type of eluent, desorption time and volume of desorption solution for the desorption step.

View Article and Find Full Text PDF

Benzoyl urea insecticides are a class of pesticides used in agriculture for the inhibition of chitin synthesis in pests. These compounds are persistent in environmental samples, and thus their monitoring is necessary to avoid detrimental effects to human health and the environment. Magnet integrated fabric phase sorptive extraction (MI-FPSE) is a recently introduced sample preparation technique that combines sample stirring and analyte extraction into one stand-alone device.

View Article and Find Full Text PDF

This study presents a fabric phase sorptive extraction (FPSE) protocol for the isolation and preconcentration of four selected polycyclic aromatic hydrocarbons from tea samples and herbal infusions, followed by their separation and quantification by gas chromatography-mass spectrometry (GC-MS). In FPSE, extraction of the target analytes is performed utilizing a flexible fabric substrate that is coated with a highly efficient sol-gel sorbent. In this work, eighteen different FPSE membranes were examined, with the highest extraction recoveries being observed with the sol-gel C coated FPSE membrane.

View Article and Find Full Text PDF

This study introduces the first mid-infrared (IR)-based method for determining the fatty acid composition of human milk. A representative milk lipid fraction was obtained by applying a rapid and solvent-free two-step centrifugation method. Attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy was applied to record absorbance spectra of pure milk fat.

View Article and Find Full Text PDF

Triazine herbicides are a class of common pesticides which are widely used to control the weeds in many agricultural crops. Although many studies have described methodologies for the determination of triazine herbicides in aqueous samples, the attention given to agricultural crops and their products is far more limited. In this study, a novel sol-gel zwitterionic multi-mode fabric phase sorptive extraction (FPSE) platform was developed for the matrix clean-up, extraction and preconcentration of five triazine herbicides from fruit juice samples prior to their determination by high performance liquid chromatography-diode array detection (HPLC-DAD).

View Article and Find Full Text PDF

The determination of triazine herbicides in water samples is of utmost importance, due to their persistence and excessive use. However, since the concentration of triazine pesticides in real samples is low, an extraction/preconcentration step is typically required. Capsule phase microextraction (CPME) is a recently introduced sample preparation technique in which highly efficient sol-gel sorbents are encapsulated in a tubular polymer membrane.

View Article and Find Full Text PDF

It is challenging to establish a correlation between the agronomical practices and the volatile profile of high-value agricultural products. In this study, the volatile metabolome of walnut oils from conventional and organic farming type was explored by HS-SPME-GC-MS. The SPME protocol was optimized after evaluating the effects of extraction time, extraction temperature, and sample mass.

View Article and Find Full Text PDF

In the present study, a novel approach for mid-infrared (IR)-based prediction of bovine milk fatty acid composition is introduced. A rapid, solvent-free, two-step centrifugation method was applied in order to obtain representative milk fat fractions. IR spectra of pure milk lipids were recorded with attenuated total reflection Fourier-transform infrared (ATR-FT-IR) spectroscopy.

View Article and Find Full Text PDF

The main objective of the present work was to develop a method for the simultaneous and comprehensive analysis of (poly-)phenolic and flavonoid compounds with liquid chromatography with diode array and mass spectrometric detection and its application to green asparagus samples. To this end, a representative set of polyphenols was used to develop the method. A through method validation was carried out with these.

View Article and Find Full Text PDF

Graphene oxide is a compound with a form similar to graphene, composed of carbon atoms in a sp single-atom layer of a hybrid connection. Due to its significant surface area and its good mechanical and thermal stability, graphene oxide has a plethora of applications in various scientific fields including heterogenous catalysis, gas storage, environmental remediation, etc. In analytical chemistry, graphene oxide has been successfully employed for the extraction and preconcentration of organic compounds, metal ions, and proteins.

View Article and Find Full Text PDF

Graphene oxide (GO) is a chemical compound with a form similar to graphene that consists of one-atom-thick two-dimensional layers of sp-bonded carbon. Graphene oxide exhibits high hydrophilicity and dispersibility. Thus, it is difficult to be separated from aqueous solutions.

View Article and Find Full Text PDF