Background: Timely detection of stress in people with dementia and people with an intellectual disability (ID) may reduce the occurrence of challenging behavior. However, detecting stress is often challenging as many long-term care (LTC) residents with dementia and residents with ID have communication impairments, limiting their ability to express themselves. Wearables can help detect stress but are not always accepted by users and are uncomfortable to wear for longer periods.
View Article and Find Full Text PDFPurpose: People with intellectual disabilities often show challenging behaviour, which can manifest itself in self-harm or aggression towards others. Real-time monitoring of stress in clients with challenging behaviour can help caregivers to promptly deploy interventions to prevent escalations, ultimately to improve the quality of life of client and caregiver. This study aimed to assess the impact of real-time stress monitoring with HUME, and the subsequent interventions deployed by the care team, on stress levels and quality of life.
View Article and Find Full Text PDFPeople with severe intellectual disabilities (ID) could have difficulty expressing their stress which may complicate timely responses from caregivers. The present study proposes an automatic stress detection system that can work in real-time. The system uses wearable sensors that record physiological signals in combination with machine learning to detect physiological changes related to stress.
View Article and Find Full Text PDFWhen designing a new nanostructure or microstructure, one can follow a processing-based manufacturing pathway, in which the structure properties are defined based on the processing capabilities of the fabrication method at hand. Alternatively, a performance-based pathway can be followed, where the envisioned performance is first defined, and then suitable fabrication methods are sought. To support the latter pathway, fabrication methods are here reviewed based on the geometric and material complexity, resolution, total size, geometric and material diversity, and throughput they can achieve, independently from processing capabilities.
View Article and Find Full Text PDFIn this paper, a thermal imprint technique, double-layer nanoimprint lithography (dlNIL), is introduced, allowing complete filling of features in the dimensional range of submicrometer to millimeter. The imprinting and filling quality of dlNIL was studied on Si substrates as a model system and compared to results obtained with regular NIL (NIL) and reverse NIL (rNIL). Wavy foils were imprinted with NIL, rNIL and dlNIL and the patterning results compared and discussed.
View Article and Find Full Text PDFMiniaturization of biosensors is envisaged by the development of biochips consisting of parallel microarray patterns of binding sites on rigid substrates, such as glass or silicon. Thin plastic substrates are promising flexible alternatives because of the possibility for large-area roll-to-roll manufacturing of disposable chips at lower costs. Mature optical lithography technology faces many challenges when used to pattern flexible foils as a result of the substrate instabilities, especially at higher temperatures.
View Article and Find Full Text PDF