We present an experimental method aimed at measuring mass densities of solids at ambient pressure. The principle of the method is flotation in a mixture of liquid nitrogen and liquid argon, where the mixing ratio is varied until the solid hovers in the liquid mixture. The temperature of such mixtures is in the range of 77-87 K, and therefore, the main advantage of the method is the possibility of determining densities of solid samples, which are instable above 90 K.
View Article and Find Full Text PDFWe investigate the downstroke transition from high- (HDA) to low-density amorphous ice (LDA) at 140 (H(2)O) and 143 K (D(2)O). The visual observation of sudden phase separation at 0.07 GPa is evidence of the first-order character of the transition.
View Article and Find Full Text PDFMany acronyms are used in the literature for describing different kinds of amorphous ice, mainly because many different preparation routes and many different sample histories need to be distinguished. We here introduce these amorphous ices and discuss the question of how many of these forms are of relevance in the context of polyamorphism. We employ the criterion of reversible transitions between amorphous "states" in finite intervals of pressure and temperature to discriminate between independent metastable amorphous "states" and between "substates" of the same amorphous "state".
View Article and Find Full Text PDFPolar stratospheric clouds (PSCs) are extremely efficient at catalysing the transformation of photostable chlorine reservoirs into photolabile species, which are actively involved in springtime ozone-depletion events. Why PSCs are such efficient catalysts, however, is not well understood. Here, we investigate the freezing behaviour of ternary HNO₃-H₂SO₄-H₂O droplets of micrometric size, which form type II PSC ice particles.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2011
A range of techniques has so far been employed for producing amorphous aqueous solutions. In case of aqueous tetrahydrofuran (THF) this comprises hyperquenching of liquid droplets, vapour co-deposition and pressure-induced amorphization of the crystalline cubic structure II clathrate. All of these samples are thermally labile and crystallize at temperatures above 110 K.
View Article and Find Full Text PDFWe here report differential scanning calorimetry (DSC) scans recorded by repeatedly heating the H(2)O (D(2)O) low density amorph (LDA) which was made by isothermal decompression of very high-density amorphous ice (VHDA) at 140 K from 1.1 to 0.006 GPa.
View Article and Find Full Text PDFWe report compression and decompression experiments of hexagonal ice in a piston cylinder setup in the temperature range of 170-220 K up to pressures of 1.6 GPa. The main focus is on establishing the effect that an increase in compression rate up to 4000 MPa/min has on the phase changes incurred at high pressures.
View Article and Find Full Text PDFA new phase of ice, named ice XV, has been identified and its structure determined by neutron diffraction. Ice XV is the hydrogen-ordered counterpart of ice VI and is thermodynamically stable at temperatures below approximately 130 K in the 0.8 to 1.
View Article and Find Full Text PDFWhat's the matter? The laboratory Raman spectra for carbonic acid (H(2)CO(3)), both for the beta-polymorph and its amorphous state, are required to detect carbonic acid on the surface of the pole caps of Mars in 2009, when the Mars Microbeam Raman Spectrometer lands on the planet. The picture shows a martian crater with ice of unknown composition, possibly containing carbonic acid (image adapted from DLR, with permission from ESA, DLR, and FU Berlin--G. Neukum).
View Article and Find Full Text PDFDoped ice V samples made from solutions containing 0.01 M HCl (DCl), HF (DF), or KOH (KOD) in H(2)O (D(2)O) were slow-cooled from 250 to 77 K at 0.5 GPa.
View Article and Find Full Text PDFHyperquenched glassy water (HGW) has been suggested as the best model for liquid water, to be used in low-temperature studies of indirect radiation effects on dissolved biomolecules (Bednarek et al. J. Am.
View Article and Find Full Text PDFAn understanding of water's anomalies is closely linked to an understanding of the phase diagram of water's metastable noncrystalline states. Despite the considerable effort, such an understanding has remained elusive and many puzzles regarding phase transitions in supercooled liquid water and their possible amorphous proxies at low temperatures remain. Here, decompression of very high density amorphous ice (VHDA) from 1.
View Article and Find Full Text PDFLayers of glassy methanolic (aqueous) solutions of KHCO3 and HCl were deposited sequentially at 78 K on a CsI window, and their reaction on heating in vacuo in steps from 78 to 230 K was followed by Fourier transform infrared (FTIR) spectroscopy. After removal of solvent and excess HCl, IR spectra revealed formation of two distinct states of amorphous carbonic acid (H2CO3), depending on whether KHCO3 and HCl had been dissolved in methanol or in water, and of their phase transition to either crystalline alpha- or beta-H2CO3. The main spectral features in the IR spectra of alpha- and beta-H2CO3 are observable already in those of the two amorphous H2CO3 forms.
View Article and Find Full Text PDFWe report a novel method of detecting the glass --> liquid transition at high pressures, which comprises measuring the relative volume change incurred upon heating glassy samples into the liquid state. We show data on glycerol in the pressure range 0.050-1.
View Article and Find Full Text PDFRaman spectra of recovered ordered H(2)O (D(2)O) ice XIII doped with 0.01 M HCl (DCl) recorded in vacuo at 80 K are reported in the range 3600-200 cm(-1). The bands are assigned to the various types of modes on the basis of isotope ratios.
View Article and Find Full Text PDFPhys Chem Chem Phys
June 2006
The exact nature of the relationship between high-density (HDA) and very-high-density (VHDA) amorphous ice is unknown at present. Here we review the relation between HDA and VHDA, concentrating on experimental aspects and discuss these with respect to the relation between low-density amorphous ice (LDA) and HDA. On compressing LDA at 125 K up to 1.
View Article and Find Full Text PDFTwo hydrogen ordered phases of ice were prepared by cooling the hydrogen disordered ices V and XII under pressure. Previous attempts to unlock the geometrical frustration in hydrogen-bonded structures have focused on doping with potassium hydroxide and have had success in partially increasing the hydrogen ordering in hexagonal ice I (ice Ih). By doping ices V and XII with hydrochloric acid, we have prepared ice XIII and ice XIV, and we analyzed their structures by powder neutron diffraction.
View Article and Find Full Text PDFOn compressing low-density amorphous ice (LDA) at 125 K up to 1.6 GPa, two distinct density steps accompanied by heat evolution are observable in pressure-density curves. Samples recovered to 77 K and 1 bar after the first and second steps show the x-ray diffraction pattern of high-density amorphous ice (HDA) and very HDA (VHDA), respectively.
View Article and Find Full Text PDFWe report in situ density values of amorphous ice obtained between 0.3 and 1.9 GPa and 144 to 183 K.
View Article and Find Full Text PDFMicrometre-sized water droplets were hyperquenched on a solid substrate held at selected temperatures between 150 and 77 K. These samples were characterized by differential scanning calorimetry (DSC) and X-ray diffraction. 140 K is the upper temperature limit to obtain mainly amorphous samples on deposition within 16-37 min.
View Article and Find Full Text PDFIt has been unclear whether amorphous glassy water heated to around 140-150 K remains glassy until it crystallizes or whether instead it turns into a supercooled and very viscous liquid. Yue and Angell compare the behaviour of glassy water under these conditions to that of hyperquenched inorganic glasses, and claim that water stays glassy as it heats up to its crystallization point; they also find a 'hidden' glass-to-liquid transition at about 169 K. Here we use differential scanning calorimetry (DSC) heating to show that hyperquenched water deposited at 140 K behaves as an ultraviscous liquid, the limiting structure of which depends on the cooling rate--as predicted by theoretical analysis of the liquid-to-glass transition.
View Article and Find Full Text PDFCpG methylation determines a variety of biological functions of DNA. The methylation signal is interpreted by proteins containing a methyl-CpG binding domain (MBDs). Based on the NMR structure of MBD1 complexed with methylated DNA we analysed the recognition mode by means of molecular dynamics simulations.
View Article and Find Full Text PDF