Publications by authors named "Erwin Hack"

We report a technological concept for freestanding photonic elements based on metamaterials fabricated on polymer films by clean-room processes and framed using 3D printing. A spin-coated cyclic olefin copolymer (TOPAS) of variable thickness down to one micrometer was used as the substrate onto which metamaterials were fabricated using optical lithography. We demonstrate the possibility of applying a second TOPAS layer to protect the device or to allow for stacking another metamaterial layer.

View Article and Find Full Text PDF

In the Clean Sky 2 project DIMES, the cyclic loading of a section of an A320 wing with pre-existing damage was carried out. We present a Digital Image Correlation (DIC) prototype system to monitor crack propagation in the aircraft wing. This system includes a mount for easy installation and adjustment in a confined space.

View Article and Find Full Text PDF

On the surface of tea infusions, the formation of a transparent, shiny film which cracks upon disturbance can often be observed. This study aims to determine how water composition, tea varieties, and tea additives impact the formation and properties of tea film, often also called tea scum. The strength of the surface film, composed of polyphenols complexed with various ions from tap water, was investigated by interfacial rheology.

View Article and Find Full Text PDF

Light beams with Orbital Angular Momentum (OAM) are explored in applications from microscopy to quantum communication, while the Talbot effect revives in applications from atomic systems to x-ray phase contrast interferometry. We evidence the topological charge of an OAM carrying THz beam in the near-field of a binary amplitude fork-grating by means of the Talbot effect, which we show to persist over several fundamental Talbot lengths. We measure and analyze the evolution of the diffracted beam behind the fork grating in Fourier domain to recover the typical donut-shaped power distribution, and we compare experimental data to simulations.

View Article and Find Full Text PDF

The Talbot effect has been revived in many fields of modern optics. As a key number of self-imaging, the fundamental Talbot length plays a crucial role in many applications. However, the inspection of the Talbot carpet for determining the Talbot length is applicable only if the 2D field distribution behind the grating is represented by a 1D cross section.

View Article and Find Full Text PDF

The mechanism of photoinduced symmetry-breaking charge separation in solid cyanine salts at the base of organic photovoltaic and optoelectronic devices is still debated. Here, we employ femtosecond transient absorption spectroscopy (TAS) to monitor the charge transfer processes occurring in thin films of pristine pentamethine cyanine (Cy5). Oxidized dye species are observed in Cy5-hexafluorophosphate salts upon photoexcitation, resulting from electron transfer from monomer excited states to H-aggregates.

View Article and Find Full Text PDF

We present a real-time THz imaging method using a commercial fiber-coupled photo conductive antenna as the THz source and an uncooled microbolometer camera for detection. This new combination of state-of-the-art components is very adaptable due to its compact and uncooled radiation source, whose fiber coupling allows for a flexible placement. Using a camera with high sensitivity renders real-time imaging possible.

View Article and Find Full Text PDF

Biomimetic, lamellar, and highly porous transition-metal carbide (MXene) embedded cellulose nanofiber (CNF) aerogels are assembled by a facile bidirectional freeze-drying approach. The biopolymer aerogels have large-scale, parallel-oriented micrometer-sized pores and show excellent mechanical strength and flexibility, tunable electrical properties, and low densities (2.7-20 mg/cm).

View Article and Find Full Text PDF

Imaging with THz radiation has proved an important tool for both fundamental science and industrial use. Here we review a class of THz imaging implementations, named coherent lensless imaging, that reconstruct the coherent response of arbitrary samples with a minimized experimental setup based only on a coherent source and a camera. After discussing the appropriate sources and detectors to perform them, we detail the fundamental principles and implementations of THz digital holography and phase retrieval.

View Article and Find Full Text PDF

The superweak tetrakis(nonafluoro-tert-butoxy)aluminate coordinating anion was employed to introduce pseudo-gas-phase conditions to the 2-[5-(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-1,3-pentadien-1-yl]-1,3,3-trimethyl-3H-indolium chromophore. The resulting formation of a photoactive organic-inorganic hybrid salt has led to a highly stabilized excited state of the organic chromophore mainly due to the minimized lattice energy and Coulomb interactions. These highly beneficial features caused by the well dispersed negative charge of the anion have led to an enhanced neat spin-casted film fluorescence intensity, prolonged fluorescence lifetime, smooth thin film surfaces and a record power photovoltaic efficiency of 3.

View Article and Find Full Text PDF

A symmetrical cyanine dye chromophore is modified with different counteranions to study the effect on crystal packing, polarizability, thermal stability, optical properties, light absorbing layer morphology, and organic photovoltaic (OPV) device parameters. Four sulfonate-based anions and the bulky bistriflylimide anion are introduced to the 2-[5-(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-1,3-pentadien-1-yl]-1,3,3-trimethyl-3H-indolium chromophore using an Amberlyst A26 (OH form) anion exchanger. Anionic charge distribution clearly correlates with device performance, whereby an average efficiency of 2% was reached in a standard bilayer organic solar.

View Article and Find Full Text PDF

Efficient light detection in the near-infrared (NIR) wavelength region is central to emerging applications such as medical imaging and machine vision. An organic upconverter (OUC) consists of a NIR-sensitive organic photodetector (OPD) and an visible organic light-emitting diode (OLED), connected in series. The device converts NIR light directly to visible light, allowing imaging of a NIR scene in the visible.

View Article and Find Full Text PDF

We realized a phase retrieval technique using terahertz (THz) radiation as an alternative to THz digital holography, named THz ptychography. Ptychography has been used in x-ray imaging as a groundbreaking improvement of conventional coherent diffraction imaging. Here we show that ptychography can be performed at THz frequencies too.

View Article and Find Full Text PDF

We present a method for the separation of the signal scattered from an object hidden behind a THz-transparent sample in the framework of THz digital holography in reflection. It combines three images of different interference patterns to retrieve the amplitude and phase distribution of the object beam. Comparison of simulated with experimental images obtained from a metallic resolution target behind a Teflon plate demonstrates that the interference patterns can be described in the simple form of three-beam interference.

View Article and Find Full Text PDF

In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly.

View Article and Find Full Text PDF

We demonstrate a digital holographic setup for Terahertz imaging of surfaces in reflection. The set-up is based on a high-power continuous wave (CW) THz laser and a high-resolution (640 × 480 pixel) bolometer detector array. Wave propagation to non-parallel planes is used to reconstruct the object surface that is rotated relative to the detector plane.

View Article and Find Full Text PDF

The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag-Cu-Ti alloy and at 880 °C with a Cu-Sn-Ti-Zr alloy. The brazing methodology was elaborated in order to enable the production of highly electrically and thermally conductive CNT/metal substrate contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.

View Article and Find Full Text PDF

A non-monochromatic THz Quantum Cascade Laser and an uncooled micro-bolometer array detector with VGA resolution are used in a beam-splitter free holographic set-up to measure amplitude and phase objects in transmission. Phase maps of the diffraction pattern are retrieved using the Fourier transform carrier fringe method; while a Fresnel-Kirchhoff back propagation algorithm is used to reconstruct the complex object image. A lateral resolution of 280 µm and a relative phase sensitivity of about 0.

View Article and Find Full Text PDF

Ultrafine grained aluminum alloys have restricted applicability due to their limited thermal stability. Metalized 7475 alloys can be soldered and brazed at room temperature using nanotechnology. Reactive foils are used to release heat for milliseconds directly at the interface between two components leading to a metallurgical joint without significantly heating the bulk alloy, thus preserving its mechanical properties.

View Article and Find Full Text PDF

In imaging and focusing applications, spherical aberration induces axial broadening of the point spread function (PSF). A transparent medium between lens and object of interest induces spherical aberration. We propose a method that first obtains both the physical thickness and the refractive index of the aberration inducing medium in situ by measuring the induced focal shifts for paraxial and large angle rays.

View Article and Find Full Text PDF

Phase retrieval techniques are widely used in optics, imaging and electronics. Originating in signal theory, they were introduced to interferometry around 1970. Over the years, many robust phase-stepping techniques have been developed that minimize specific experimental influence quantities such as phase step errors or higher harmonic components of the signal.

View Article and Find Full Text PDF

The effect of optical superresolution on speckle correlations is studied. Simulations reveal that using a lateral superresolution pupil filter more than twice the out of plane correlation length of the clear pupil can be achieved. This means that the measurement range in speckle correlation measurements doubles.

View Article and Find Full Text PDF

An innovative technique for reducing speckle noise and improving the intensity profile of the speckle correlation fringes is presented. The method is based on reducing the range of the modulation intensity values of the speckle interference pattern. After the fringe pattern is corrected adaptively at each pixel, a simple morphological filtering of the fringes is sufficient to obtain smoothed fringes.

View Article and Find Full Text PDF

A comparative study of pupil filters for transverse superresolution is presented in this article. We propose to combine the advantages of amplitude and phase filters in one complex filter that performs better than either phase or amplitude filters designed so far. The performance here refers to having a smaller spot size along with higher peak to side lobe intensity ratio.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionorlk9dvve93fi7sg7cq8egq5f1677cfr): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once