The presence of a companion can reduce fear, but the neural mechanisms underlying this social buffering of fear are incompletely known. We studied social buffering of fear in male and female, and its encoding in the amygdala of male, auditory fear-conditioned rats. Pharmacological, opto,- and/or chemogenetic interventions showed that oxytocin signaling from hypothalamus-to-central amygdala projections underlied fear reduction acutely with a companion and social buffering retention 24 h later without a companion.
View Article and Find Full Text PDFThe neuropeptide oxytocin (OXT) has generated considerable interest as potential treatment for psychiatric disorders, including anxiety and autism spectrum disorders. However, the behavioral and molecular consequences associated with chronic OXT treatment and chronic receptor (OXTR) activation have scarcely been studied, despite the potential therapeutic long-term use of intranasal OXT. Here, we reveal that chronic OXT treatment over two weeks increased anxiety-like behavior in rats, with higher sensitivity in females, contrasting the well-known anxiolytic effect of acute OXT.
View Article and Find Full Text PDFMany studies in preclinical animal models have described fear-reducing effects of the neuropeptide oxytocin in the central nucleus of the amygdala. However, recent studies have refined the role of oxytocin in the central amygdala, which may extend to the selection of an active defensive coping style in the face of immediate threat, and also fear-enhancing effects have been reported. On top of this, oxytocin enables the discrimination of unfamiliar conspecifics on the basis of their emotional state, which could allow for the selection of an appropriate coping style.
View Article and Find Full Text PDFBackground: The neuropeptide oxytocin (OXT) mediates its actions, including anxiolysis, via its G protein-coupled OXT receptor. Within the paraventricular nucleus of the hypothalamus (PVN), OXT-induced anxiolysis is mediated, at least in part, via activation of the mitogen-activated protein kinase pathway following calcium influx through transient receptor potential cation channel subfamily V member 2 channels. In the periphery, OXT activates eukaryotic elongation factor 2 (eEF2), an essential mediator of protein synthesis.
View Article and Find Full Text PDFRodent research delineates how the basolateral amygdala (BLA) and central amygdala (CeA) control defensive behaviors, but translation of these findings to humans is needed. Here, we compare humans with natural-selective bilateral BLA lesions to rats with a chemogenetically silenced BLA. We find, across species, an essential role for the BLA in the selection of active escape over passive freezing during exposure to imminent yet escapable threat (T).
View Article and Find Full Text PDFThe central amygdala has a rich repertoire of neuropeptides and neuropeptide receptors. The diverse ways in which they modulate neuronal activity and influence synaptic activity are discussed here mostly in the context of fear and anxiety-related behaviour but also with respect to nociception, hunger and satiety and chronic alcohol exposure that often come together with anxiety. It appears that neuropeptides exert rather specific effects on behaviour and physiology that can be quite different from the effects evoked by opto- or chemogenetical stimulation of the central amygdala neurons that synthesise them or express their receptors.
View Article and Find Full Text PDFRecent studies using V1b receptor (V1bR) knockout mice or central pharmacological manipulations in lactating rats highlighted the influence of this receptor for maternal behavior. However, its role in specific brain sites known to be important for maternal behavior has not been investigated to date. In the present study, we reveal that V1bR mRNA (qPCR) and protein levels (Western blot) within either the medial preoptic area (MPOA) or the medial-posterior part of the bed nucleus of the stria terminalis (mpBNST) did not differ between virgin and lactating rats.
View Article and Find Full Text PDFUnlabelled: The major regulator of the neuroendocrine stress response in the brain is corticotropin releasing factor (CRF), whose transcription is controlled by CREB and its cofactors CRTC2/3 (TORC2/3). Phosphorylated CRTCs are sequestered in the cytoplasm, but rapidly dephosphorylated and translocated into the nucleus following a stressful stimulus. As the stress response is attenuated by oxytocin (OT), we tested whether OT interferes with CRTC translocation and, thereby, Crf expression.
View Article and Find Full Text PDFThere is growing interest in anxiolytic and pro-social effects of the neuropeptide oxytocin (OXT), but the underlying intraneuronal mechanisms are largely unknown. Here we examined OXT-mediated anxiolysis in the hypothalamic paraventricular nucleus (PVN) of rats and effects of OXT administration on signaling events in hypothalamic primary and immortalized cells. In vivo, the application of SKF96365 prevented the anxiolytic activity of OXT in the PVN, suggesting that changes in intracellular Ca(2+) mediate the acute OXT behavioral effects.
View Article and Find Full Text PDFThe c-Raf - MEK1/2 - ERK1/2 mitogen-activated protein kinase (MAPK) intracellular signalling cascade in neurons plays important roles in the control of a variety of behaviours, including social behaviours and anxiety. These roles partially overlap with those described for oxytocin (OXT), and it has been shown that OXT activates the MAPK pathway in the hypothalamus (of male), and hippocampus (of female) rats. Here, by combining behavioural (light/dark box) and biochemical analyses (western blotting), we tested two hypotheses: (i) that OXT is anxiolytic within the hypothalamus of females, and (ii) that this effect, as well as that of lactation-associated anxiolysis, depends on the recruitment of the MAPK pathway.
View Article and Find Full Text PDFNeuropeptides of the brain are important neuromodulators, controlling behaviour and physiology. They signal through G protein-coupled receptors (GPCR) that couple to complex intracellular signalling pathways. These signalling networks integrate information from multiple sources, resulting in appropriate physiological and behavioural responses to environmental and internal cues.
View Article and Find Full Text PDFAnesthetics may induce specific changes that alter the balance of activity within neural networks. Here we describe the effects of the GABA(A) receptor potentiating anesthetic etomidate on sensory processing, studied in a cerebellum-like structure, the electrosensory lateral line lobe (ELL) of mormyrid fish, in vitro. Previous studies have shown that the ELL integrates sensory input and removes predictable features by comparing reafferent sensory signals with a descending electromotor command-driven corollary signal that arrives in part through parallel fiber synapses with the apical dendrites of GABAergic interneurons.
View Article and Find Full Text PDFThe endocrine stress response is pivotal in vertebrate physiology. The stress hormone cortisol-the end product of the endocrine stress axis-(re-)directs energy flows for optimal performance under conditions where homeostasis may be or become at risk. Key players in the continuous adaptation process are corticotropin-releasing factor (CRF) from the hypothalamic nucleus preopticus (NPO), pituitary adrenocorticotropic hormone (ACTH) and cortisol produced by the interrenal cells in the headkidney (adrenal equivalent of fish).
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
September 2005
Cortisol release from fish head kidney during the acute phase of the stress response is controlled by the adrenocorticotropic hormone (ACTH) from the pituitary pars distalis (PD). Alpha-melanocyte-stimulating hormone (alpha-MSH) and beta-endorphin, from the pars intermedia (PI), have been implicated in cortisol release during the chronic phase. The present study addresses the regulation of cortisol release by ACTH and alpha-MSH in common carp (Cyprinus carpio) and includes characterization of their receptors, namely, the melanocortin-2 and melanocortin-5 receptors (MC2R and MC5R).
View Article and Find Full Text PDFSpatial and temporal ambient temperature variations directly influence cellular biochemistry and thus the physiology of ectotherms. However, many aquatic ectothermic species maintain coordinated sensorimotor function during large acute body-temperature changes, which points to a compensatory mechanism within the neural system. Here we used high-resolution functional magnetic resonance imaging to study brain responses to a drop of 10 degrees C of ambient water temperature in common carp.
View Article and Find Full Text PDFIsogenic carp Cyprinus carpio L. were acclimated to water temperatures of 15, 22 and 29 degrees C for at least 8 weeks. The acclimations consistently resulted in slightly, but significantly, different plasma osmolality, sodium, potassium and chloride concentrations between the groups studied.
View Article and Find Full Text PDFThis study investigates whether thyrotropin-releasing hormone (TRH), alpha-melanocyte-stimulating hormone (alpha-MSH) and N-acetyl beta-endorphin (NAc beta-END), or the thyroid hormones thyroxine (T4) and 3,5,3'-triiodothyronine (T3) are involved in the physiological response to temperature changes in the poikilotherm common carp (CYPRINUS CARPIO). Carps were either subjected to a rapid cold exposure or acclimated over time to three different temperatures. Acute cold exposure did not influence blood plasma alpha-MSH concentrations.
View Article and Find Full Text PDF