Front Bioeng Biotechnol
March 2024
The synergy between biomolecules with inorganic nanomaterials and nanoparticles has been investigated over the past years, primarily to improve biomarker reception, generate signals, and amplify the signals generated. In this paper, several articles on aptamer-based and antibody-based electrochemical biosensors that target antigens were examined. Among the key characteristics identified were the electrochemical platform development, which includes the usage of nanomaterials as electroactive or electrocatalytic labels, crosslinking of the biological agent with inorganic compounds, and electrode coating to provide an electronic source and support efficient electron transfer.
View Article and Find Full Text PDFThe soaring demand and future supply risk for cobalt (Co) necessitate more efficient adsorbents for its recycling from electronic wastes, as a cheaper and less hazardous option for its production. Herein, a magnetic adsorbent covalently tethered with 5-hydroxypicolinic acid (HPCA) as Co(II) ligand was developed. The magnetic component (FeO) was protected with silica (SiO), then silanized with chloroalkyl linker and subsequently functionalized with HPCA via S2 nucleophilic substitution (HPCA@SiO@FeO).
View Article and Find Full Text PDFPractical adsorbents that could efficiently collect radioactive Cesium (Cs) are critically important in achieving proper management and treatment measures for nuclear wastes. Herein, a hyper-crosslinked tetraphenylborate-based adsorbent (TPB-X) was prepared by reacting TPB anions as Cs binding sites with dimethoxymethane (DMM) as crosslinker. The most efficient TPB-X synthesis was attained at 1:4 TPB/DMM mole ratio with sorbent yield of 81.
View Article and Find Full Text PDF