Ring1B is an essential member of the highly conserved Polycomb group proteins, which orchestrate developmental processes, cell growth and stem cell fate by modifying local chromatin structure. Ring1B was found to be the E3 ligase that monoubiquitinates histone H2A, which adds a new level of chromatin modification to Polycomb group proteins. Here we report that Ring1B belongs to the exclusive group of proteins that for their translation depend on a stable 5' UTR sequence in their mRNA known as an Internal Ribosome Entry Site (IRES).
View Article and Find Full Text PDFBackground: Polycomb repressive complex 1 (PRC1) core member Ring1b/Rnf2, with ubiquitin E3 ligase activity towards histone H2A at lysine 119, is essential for early embryogenesis. To obtain more insight into the role of Ring1b in early development, we studied its function in mouse embryonic stem (ES) cells.
Methodology/principal Findings: We investigated the effects of Ring1b ablation on transcriptional regulation using Ring1b conditional knockout ES cells and large-scale gene expression analysis.
In eukaryotes, Suv39h H3K9 trimethyltransferases are required for pericentric heterochromatin formation and function. In early mouse preimplantation embryos, however, paternal pericentric heterochromatin lacks Suv39h-mediated H3K9me3 and downstream marks. Here we demonstrate Ezh2-independent targeting of maternally provided polycomb repressive complex 1 (PRC1) components to paternal heterochromatin.
View Article and Find Full Text PDFX inactivation involves the stable silencing of one of the two X chromosomes in XX female mammals. Initiation of this process occurs during early development and involves Xist (X-inactive-specific transcript) RNA coating and the recruitment of Polycomb repressive complex (PRC) 2 and PRC1 proteins. This recruitment results in an inactive state that is initially labile but is further locked in by epigenetic marks such as DNA methylation, histone hypoacetylation, and MACROH2A deposition.
View Article and Find Full Text PDF