Publications by authors named "Erwin Berendsen"

Background & Aims: Proteus spp, Gram-negative facultative anaerobic bacilli, have recently been associated with Crohn's disease (CD) recurrence after intestinal resection. We investigated the genomic and functional role of Proteus as a gut pathogen in CD.

Methods: Proteus spp abundance was assessed by ure gene-specific polymerase chain in 54 pairs of fecal samples and 101 intestinal biopsies from patients with CD and healthy controls.

View Article and Find Full Text PDF

To improve the preparedness against exposure to highly pathogenic bacteria and to anticipate the wide variety of bacteria that can cause bloodstream infections (BSIs), a safe, unbiased and highly accurate identification method was developed. Our liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method can identify highly pathogenic bacteria, their near-neighbors and bacteria that are common causes of BSIs directly from positive blood culture flasks. The developed Peptide-Based Microbe Detection Engine (http://proteome2pathogen.

View Article and Find Full Text PDF

Aim: Bloodstream infections are a common cause of disease and a fast and accurate identification of the causative agent or agents of bloodstream infections would aid the start of adequate treatment.

Materials & Methods: A liquid chromatography-tandem mass spectrometry (LC-MS/MS) shotgun proteomics method was developed for the identification of bacterial species directly from blood cultures that were simulated by inoculating blood culture bottles with single or multiple clinically relevant microorganisms.

Results: Using LC-MS/MS, the single species were correctly identified in 100% of the blood cultures, whereas for polymicrobial infections, 78% of both species were correctly identified in blood cultures.

View Article and Find Full Text PDF

Realistic prediction of microbial inactivation in food requires quantitative information on variability introduced by the microorganisms. Bacillus subtilis forms heat resistant spores and in this study the impact of strain variability on spore heat resistance was quantified using 20 strains. In addition, experimental variability was quantified by using technical replicates per heat treatment experiment, and reproduction variability was quantified by using two biologically independent spore crops for each strain that were heat treated on different days.

View Article and Find Full Text PDF

Bacterial endospore formers can produce spores that are resistant to many food processing conditions, including heat. Some spores may survive heating processes aimed at production of commercially sterile foods. Recently, it was shown that a operon, designated , present on a Tn transposon in , leads to profoundly increased wet heat resistance of spores.

View Article and Find Full Text PDF

Bacterial endospores are among the most resilient forms of life on earth and are intrinsically resistant to extreme environments and antimicrobial treatments. Their resilience is explained by unique cellular structures formed by a complex developmental process often initiated in response to nutrient deprivation. Although the macromolecular structures of spores from different bacterial species are similar, their resistance to environmental insults differs widely.

View Article and Find Full Text PDF

Spore germination shows a large inter-strain variability. Spores of certain Bacillus subtilis strains, including isolates from spoiled food products, exhibit different germination behavior from spores of the well-studied model organism Bacillus subtilis 168, often for unknown reasons. In this study, we analyzed spore germination efficiencies and kinetics of seventeen B.

View Article and Find Full Text PDF

Here, we report the draft genomes of five strains of Geobacillus spp., one Caldibacillus debilis strain, and one draft genome of Anoxybacillus flavithermus, all thermophilic spore-forming Gram-positive bacteria.

View Article and Find Full Text PDF

Here, we report the draft genome sequences of 10 isolates of Bacillus subtilis, a spore forming Gram-positive bacterium. The strains were selected from food products and produced spores with either high or low heat resistance.

View Article and Find Full Text PDF

Spore-forming bacteria are ubiquitous in nature. The resistance properties of bacterial spores lie at the heart of their widespread occurrence in food ingredients and foods. The efficacy of inactivation by food-processing conditions is largely determined by the characteristics of the different types of spores, whereas food composition and storage conditions determine the eventual germination and outgrowth of surviving spores.

View Article and Find Full Text PDF

Bacillus cereus can contaminate food and cause emetic and diarrheal foodborne illness. Here, we report whole-genome sequences of eight strains of B. cereus, isolated from different food sources.

View Article and Find Full Text PDF

High-level heat resistance of spores of Bacillus thermoamylovorans poses challenges to the food industry, as industrial sterilization processes may not inactivate such spores, resulting in food spoilage upon germination and outgrowth. In this study, the germination and heat resistance properties of spores of four food-spoiling isolates were determined. Flow cytometry counts of spores were much higher than their counts on rich medium (maximum, 5%).

View Article and Find Full Text PDF

The thermophilic bacterium Bacillus thermoamylovorans produces highly heat-resistant spores that can contaminate food products, leading to their spoilage. Here, we present the whole-genome sequences of four B. thermoamylovorans strains, isolated from milk and acacia gum.

View Article and Find Full Text PDF

Here, we report the draft genome sequences of five food isolates of Bacillus pumilus, a spore-forming Gram-positive bacterium.

View Article and Find Full Text PDF

The survival of bacterial spores after heat treatment and the subsequent germination and outgrowth in a food product can lead to spoilage of the food product and economical losses. Prediction of time-temperature conditions that lead to sufficient inactivation requires access to detailed spore thermal inactivation kinetics of relevant model strains. In this study, the thermal inactivation kinetics of spores of fourteen strains belonging to the Bacillus subtilis group were determined in detail, using both batch heating in capillary tubes and continuous flow heating in a micro heater.

View Article and Find Full Text PDF

Protein translocation via the Tat machinery in thylakoids and bacteria occurs through a cooperation between the TatA, TatB and TatC subunits, of which the TatC protein forms the initial Tat substrate-binding site. The Bacillus subtilis Tat machinery lacks TatB and comprises two separate TatAC complexes with distinct substrate specificities: PhoD is secreted by the TatAdCd complex, whereas YwbN is secreted by the TatAyCy complex. To study the role of the Gram-positive TatC proteins in Tat-dependent protein secretion efficiency, we applied several genetic engineering approaches to modify and analyse the B.

View Article and Find Full Text PDF