Publications by authors named "Erwan Thouennon"

The estrogen-related receptor γ (ERRγ, NR3B3) is a constitutively active nuclear receptor which has been proposed to act as a mediator of the low-dose effects of a number of environmental endocrine-disrupting chemicals (EDCs) such as the xenoestrogen bisphenol-A (BPA). To better characterize the ability of exogenous compounds to bind and activate ERRγ, we used a combination of cell-based, biochemical, structural and computational approaches. A purposely created stable cell line allowed for the determination of the EC50s for over 30 environmental ERRγ ligands, including previously unknown ones.

View Article and Find Full Text PDF

Estrogens play a pivotal role in breast cancer etiology, and endocrine therapy remains the main first line treatment for estrogen receptor-alpha (ERα)-positive breast cancer. ER are transcription factors whose activity is finely regulated by various regulatory complexes, including histone deacetylases (HDACs). Here, we investigated the role of HDAC9 in ERα signaling and response to antiestrogens in breast cancer cells.

View Article and Find Full Text PDF

Zebrafish is increasingly used as an animal model to study the effects of environmental nuclear receptors (NRs) ligands. As most of these compounds have only been tested on human NRs, it is necessary to measure their effects on zebrafish NRs. Estrogen receptors (ER) α and β and peroxysome proliferator activated receptor (PPAR) γ are main targets of environmental disrupting compounds (EDCs).

View Article and Find Full Text PDF

Endocrine-disrupting chemicals (EDCs) are exogenous substances interfering with hormone biosynthesis, metabolism, or action, and consequently causing disturbances in the endocrine system. Various pathways are activated by EDCs, including interactions with nuclear receptors (NRs), which are primary targets of numerous environmental contaminants. The main NRs targeted by environmental contaminants are the estrogen (ER α, β) and the androgen (AR) receptors.

View Article and Find Full Text PDF

Brain peroxisome proliferator-activated receptor gamma (PPARγ), a member of the nuclear receptor superfamily of ligand-dependent transcription factors, is involved in neuroprotection. It is activated by the drug rosiglitazone, which then can increase the pro-survival protein B-cell lymphoma 2 (BCL-2), to mediate neuroprotection. However, the mechanism underlying this molecular cascade remains unknown.

View Article and Find Full Text PDF

Granins and their derived peptides are valuable circulating biological markers of neuroendocrine tumors. The aim of the present study was to investigate the tumoral chromogranin A (CgA)-derived peptide WE-14 and the potential advantage to combine plasma WE-14 detection with the EM66 assay and the existing current CgA assay for the diagnosis of pheochromocytoma. Compared to healthy volunteers, plasma WE-14 levels were 5.

View Article and Find Full Text PDF

Pheochromocytomas are catecholamine-producing tumors arising from chromaffin cells of the adrenal medulla or extra-adrenal location. Along with catecholamines, tumoral cells produce and secrete elevated quantities of trophic peptides which are normally released in a regulated manner by the normal adrenal medulla. Among these peptides, the amounts of pituitary adenylate cyclase-activating polypeptide (PACAP), adrenomedullin (AM), and neuropeptide Y (NPY) are particularly high.

View Article and Find Full Text PDF

Pheochromocytomas are rare catecholamine-secreting tumors that arise from chromaffin tissue within the adrenal medulla and extra-adrenal sites. Typical clinical manifestations are sustained or paroxysmal hypertension, severe headaches, palpitations and sweating resulting from hormone excess. However, their presentation is highly variable and can mimic many other diseases.

View Article and Find Full Text PDF

Pheochromocytomas are catecholamine-producing tumors which are generally benign, but which can also present as or develop into malignancy. Molecular pathways of malignant transformation remain poorly understood. Pheochromocytomas express various trophic peptides which may influence tumoral cell behavior.

View Article and Find Full Text PDF

The last 5 years have witnessed important advances in understanding the mechanisms of tumorigenesis of chromaffin cells. Large-scale microarray analyses of pheochromocytomas have identified two distinct gene-expression profiles encompassing all hereditary and sporadic tumors. Gene-expression profiling of benign and malignant pheochromocytomas is providing a better understanding of the mechanisms of metastasis.

View Article and Find Full Text PDF

Unlabelled: The gastroprokinetic agent metoclopramide is known to stimulate catecholamine secretion from pheochromocytomas. The aim of the study was to investigate the mechanism of action of metoclopramide and expression of serotonin type 4 (5-HT(4)) receptors in pheochromocytoma tissues. Tissue explants, obtained from 18 pheochromocytomas including the tumor removed from a 46-year-old female patient who experienced life-threatening hypertension crisis after metoclopramide administration and 17 additional pheochromocytomas (9 benign and 8 malignant) were studied.

View Article and Find Full Text PDF

An increase in circulating catecholamine levels represents one of the mechanisms whereby organisms cope with stress. In the periphery, catecholamines mainly originate from the sympathoadrenal system. As we reported, in addition to the central control through cholinergic innervation, a local gap junction-delineated route between adrenal chromaffin cells contributes to catecholamine exocytosis.

View Article and Find Full Text PDF

Chromaffin cells of the adrenal medulla elaborate and secrete catecholamines and neuropeptides for hormonal and paracrine signaling in stress and during inflammation. We have recently documented the action of the cytokine TNF-alpha on neuropeptide secretion and biosynthesis in isolated bovine chromaffin cells. Here, we demonstrate that the type 2 TNF-alpha receptor (TNF-R2) mediates TNF-alpha signaling in chromaffin cells via activation of nuclear factor (NF)-kappaB.

View Article and Find Full Text PDF

Sympathetic neurons and chromaffin cells derive from common sympathoadrenal precursors which arise from the neural crest. Cells from this lineage migrate to their final destination and differentiate by acquiring a catecholaminergic phenotype in response to different environmental factors. It has been shown that the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) and its PAC1 receptor are expressed at early stages of sympathetic development, and participate to the control of neuroblast proliferation and differentiation.

View Article and Find Full Text PDF

Context: Pheochromocytomas are catecholamine-producing tumors that are generally benign but that can also present as or develop into malignancy. Occurrence of malignant pheochromocytomas can only be asserted by imaging of metastatic lesions.

Objectives: We conducted a gene expression profiling of benign and malignant tumors to identify a gene signature that would allow us to discriminate benign from malignant pheochromocytomas and to gain a better understanding of tumorigenic pathways associated with malignancy.

View Article and Find Full Text PDF

Pheochromocytomas (PHEOs) are rare catecholamine-producing neoplasias that arise from chromaffin cells of the adrenal medulla or from extra-adrenal locations. These neuroendocrine tumors are usually benign, but may also present as or develop into a malignancy. There are currently no means to predict or to cure malignant tumors which have a poor prognosis.

View Article and Find Full Text PDF

The aim of the present study was to compare the expression levels of secretogranin II (SgII), prohormone convertases (PC)1 and PC2, and the proteolytic processing of SgII in benign versus malignant pheochromocytomas. Quantitative (Q)-PCR experiments indicated that SgII, PC1, and PC2 mRNAs were overexpressed in pheochromocytoma compared to non-tumoral chromaffin cells (P<0.001) and in benign compared to malignant tumors (P<0.

View Article and Find Full Text PDF

PACAP inhibits cell proliferation and promotes cell survival and neurite outgrowth of pheochromocytoma PC12 cells. Transcriptome analysis of PACAP-treated PC12 cells allowed to identify potential genes implicated in this differentiation process. Among the genes whose expression is up-regulated by PACAP, we identified the Inhibitor of DNA binding 3 (Id3).

View Article and Find Full Text PDF