Production of hydrocarbon-based, alkaline exchange, membrane-electrode assemblies (MEA's) for fuel cells and electrolyzers is examined via catalyst-coated membrane (CCM) and gas-diffusion electrode (GDE) fabrication routes. The inability effectively to hot-press hydrocarbon-based ion-exchange polymers (ionomers) risks performance limitations due to poor interfacial contact, especially between GDE and membrane. The addition of an ionomeric interlayer is shown greatly to improve the intimacy of contact between GDE and membrane, as determined by ex situ through-plane MEA impedance measurements, indicated by a strong decrease in the frequency of the high-frequency zero phase angle of the complex impedance, and confirmed in situ with device performance tests.
View Article and Find Full Text PDFHerein, we report a Ru-rich anode catalyst for alkaline exchange membrane fuel cells. The fuel cell with such a RuPdIr/C anode and Ag-based cathode attained a peak power density close to 1 W cm-2 with only 0.2 mg cm-2 anode precious group metal loading, reaching the highest mass activity reported for this technology.
View Article and Find Full Text PDF